

NIST Special Publication 800-90

Recommendation for Random
Number Generation Using

Deterministic Random Bit Generators

Elaine Barker
John Kelsey

Computer Security Division

Inforamtion Technology Laboratory

C O M P U T E R S E C U R I T Y

June 2006

U.S. Department of Commerce

Carlos M. Gutierrez, Secretary

Technology Administration
Robert Cresanti, Under Secretary of Commerce for Technology

National Institute of Standards and Technology
William Jeffrey, Director

NIST SP 800-90 June 2006

ii

 Abstract

This Recommendation specifies mechanisms for the generation of random bits using
deterministic methods. The methods provided are based on either hash functions, block
cipher algorithms or number theoretic problems.

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function;
random number generator

NIST SP 800-90 June 2006

iii

Acknowledgements
The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions by Mike Boyle, Paul Timmel and Debby Wallner from the
National Security Agency for assistance in the development of this Recommendation. NIST
also thanks the many contributions by the public and private sectors, and by the
Cryptographic Tool Standards and Guidelines working group of American Standards
Committee X9, whose thoughtful and constructive comments improved the quality and
usefulness of this publication.

NIST SP 800-90 June 2006

iv

Table of Contents
1 Authority ... 1

2 Introduction.. 1

3 Scope... 2

4 Terms and Definitions ... 3

5 Symbols and Abbreviated Terms... 8

6 Document Organization.. 9

7 Functional Model ..11

7.1 Entropy Input ... 11

7.2 Other Inputs ... 12

7.3 The Internal State ... 12

7.4 The DRBG Mechanism Functions... 12

8. DRBG Mechanism Concepts and General Requirements14

8.1 DRBG Mechanism Functions ... 14

8.2 DRBG Instantiations... 14

8.3 Internal States.. 14

8.4 Security Strengths Supported by an Instantiation ... 15

8.5 DRBG Mechanism Boundaries... 15

8.6 Seeds ... 17

8.6.1 Seed Construction for Instantiation ... 17

8.6.2 Seed Construction for Reseeding .. 18

8.6.3 Entropy Requirements for the Entropy Input ... 18

8.6.4 Seed Length ... 19

8.6.5 Source of Entropy Input ... 19

8.6.6 Entropy Input and Seed Privacy... 19

8.6.7 Nonce ... 19

8.6.8 Reseeding .. 20

8.6.9 Entropy Input and Seed Use ... 20

8.6.10 Entropy Input and Seed Separation.. 20

8.7 Other Inputs to the DRBG Mechanism ... 20

8.7.1 Personalization String.. 21

NIST SP 800-90 June 2006

v

8.7.2 Additional Input.. 21

8.8 Prediction Resistance and Backtracking Resistance ... 21

9 DRBG Mechanism Functions ..24

9.1 Instantiating a DRBG .. 24

9.2 Reseeding a DRBG Instantiation .. 27

9.3 Generating Pseudorandom Bits Using a DRBG ... 29

9.3.1 The Generate Function... 29

9.3.2 Reseeding at the End of the Seedlife ... 32

9.3.3 Handling Prediction Resistance Requests ... 33

9.4 Removing a DRBG Instantiation... 33

10 DRBG Algorithm Specifications ...35

10.1 DRBG Mechanisms Based on Hash Functions .. 35

10.1.1 Hash_DRBG ... 36

10.1.1.1 Hash_DRBG Internal State .. 36

10.1.1.2 Instantiation of Hash_DRBG ... 37

10.1.1.3 Reseeding a Hash_DRBG Instantiation 38

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG 39

10.1.2 HMAC_DRBG ... 41

10.1.2.1 HMAC_DRBG Internal State .. 41

10.1.2.2 The Update Function (Update).. 42

10.1.2.3 Instantiation of HMAC_DRBG.. 43

10.1.2.4 Reseeding an HMAC_DRBG Instantiation 43

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 44

10.2 DRBG Mechanisms Based on Block Ciphers... 46

10.2.1 CTR_DRBG... 46

10.2.1.1 CTR_DRBG Internal State.. 49

10.2.1.2 The Update Function (Update)... 49

10.2.1.3 Instantiation of CTR_DRBG ... 50

10.2.1.4 Reseeding a CTR_DRBG Instantiation 52

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG 54

10.3 DRBG Mechanisms Based on Number Theoretic Problems................................. 58

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)......................... 58

NIST SP 800-90 June 2006

vi

10.3.1.1 Dual_EC_DRBG Internal State... 60

10.3.1.2 Instantiation of Dual_EC_DRBG.. 60

10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation 62

10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG............ 62

10.4 Auxilliary Functions ... 65

10.4.1 Derivation Function Using a Hash Function (Hash_df) 65

10.4.2 Derivation Function Using a Block Cipher Algorithm
(Block_Cipher_df) .. 66

10.4.3 BCC Function .. 68

11 Assurance...69

11.1 Minimal Documentation Requirements .. 69

11.2 Implementation Validation Testing ... 70

11.3 Health Testing .. 70

11.3.1 Known Answer Testing .. 71

11.3.2 Testing the Instantiate Function... 71

11.3.3 Testing the Generate Function ... 71

11.3.4 Testing the Reseed Function.. 72

11.3.5 Testing the Uninstantiate Function .. 72

11.3.6 Error Handling.. 72

11.3.6.1 Errors Encountered During Normal Operation.......................... 73

11.3.6.2 Errors Encountered During Health Testing 73

Appendix A: (Normative) Application-Specific Constants74

A.1 Constants for the Dual_EC_DRBG ... 74

A.1.1 Curve P-256 .. 74

A.1.2 Curve P-384 .. 75

A.1.3 Curve P-521 .. 75

A.2 Using Alternative Points in the Dual_EC_DRBG .. 76

A.2.1 Generating Alternative P, Q.. 76

A.2.2 Additional Self-testing Required for Alternative P, Q 77

Appendix B: (Normative) Conversion and Auxilliary Routines78

B.1 Bitstring to an Integer .. 78

B.2 Integer to a Bitstring... 78

NIST SP 800-90 June 2006

vii

B.3 Integer to an Byte String .. 78

B.4 Byte String to an Integer .. 79

B.5 Converting Random Numbers from/to Random Bits.. 79

B.5.1 Converting Random Bits into a Random Number 79

B.5.1.1 The Simple Discard Method .. 80

B.5.1.2 The Complex Discard Method ... 80

B.5.1.3 The Simple Modular Method.. 81

B.5.1.4 The Complex Modular Method... 81

B.5.2 Converting a Random Number into Random Bits 82

B.5.2.1 The No Skew (Variable Length Extraction) Method 82

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method 83

Appendix C: (Normative) Entropy and Entropy Sources......................................85

C.1 What is Entropy ?... 85

C.2 Entropy Source .. 85

C.3 Entropy Assessment .. 86

Appendix D: (Normative) Constructing a Random Bit Generator (RBG)
from Entropy Sources and DRBG Mechanisms...89

D.1 Entropy Input for a DRBG Mechanism ... 89

D.2 Availability of Entropy Input for a DRBG Mechanism ... 90

D.2.1 Using a Readily Available Source of Entropy Input 90

D.2.2 No Readily Available Source of Entropy Input ... 91

Appendix E: (Informative) Security Considerations when Extracting Bits
in the Dual_EC_DRBG...92

E.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp 92

E.2 Adjusting for the missing bit(s) of entropy in the x coordinates. 92

Appendix F: (Informative) Example Pseudocode for Each DRBG
Mechanism ...95

F.1 Hash_DRBG Example... 95

F.1.1 Instantiation of Hash_DRBG .. 96

F.1.2 Reseeding a Hash_DRBG Instantiation .. 98

F.1.3 Generating Pseudorandom Bits Using Hash_DRBG 99

F.2 HMAC_DRBG Example... 101

F.2.1 Instantiation of HMAC_DRBG... 101

NIST SP 800-90 June 2006

viii

F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG 103

F.3 CTR_DRBG Example Using a Derivation Function... 104

F.3.1 The Update Function .. 105

F.3.2 Instantiation of CTR_DRBG Using a Derivation Function....................... 106

F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function 107

F.3.4 Generating Pseudorandom Bits Using CTR_DRBG 109

F.4 CTR_DRBG Example Without a Derivation Function.. 111

F.4.1 The Update Function .. 111

F.4.2 Instantiation of CTR_DRBG Without a Derivation Function 111

F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function ... 112

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG 112

F.5 Dual_EC_DRBG Example... 112

F.5.1 Instantiation of Dual_EC_DRBG... 113

F.5.2 Reseeding a Dual_EC_DRBG Instantiation .. 115

F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG......................... 116

Appendix G: (Informative) DRBG Mechanism Selection118

G.1 Hash_DRBG ... 118

G.2 HMAC_DRBG ... 119

G.3 CTR_DRBG... 120

G.4 DRBGs Based on Hard Problems... 121

G.5 Summary for DRBG Selection .. 122

Appendix H : (Informative) References ...123

NIST SP 800-90 June 2006

1

Random Number Generation Using

Deterministic Random Bit Generators

1 Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information
Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems. This
recommendation is consistent with the requirements of the Office of Management and
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in A-130, Appendix III.

This recommendation has been prepared for use by Federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright.
(Attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or
any other federal official.

Conformance testing for implementations of the deterministic random bit generator
mechanisms (DRBG mechanisms) that are specified in this Recommendation will be
conducted within the framework of the Cryptographic Module Validation Program
(CMVP), a joint effort of NIST and the Communications Security Establishment of the
Government of Canada. An implementation of a DRBG mechanism must adhere to the
requirements in this Recommendation in order to be validated under the CMVP. The
requirements of this Recommendation are indicated by the word “shall.”

2 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be
used directly or converted to random numbers when random values are required by
applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-

NIST SP 800-90 June 2006

2

deterministic random bit generators (NRBGs)1. The other strategy is to compute bits
deterministically using an algorithm; this class of RBGs is known as Deterministic Random
Bit Generators (DRBGs)2.

A DRBG is based on a DRBG mechanism as specified in this Recommendation and
includes a source of entropy input. A DRBG mechanism uses an algorithm (a DRBG
algorithm) that produces a sequence of bits from an initial value that is determined by a
seed that is determined from the entropy input. Once the seed is provided and the initial
value is determined, the DRBG is said to be instantiated. Because of the deterministic
nature of the process, a DRBG is said to produce pseudorandom bits, rather than random
bits. The seed used to instantiate the DRBG must contain sufficient entropy to provide an
assurance of randomness. If the seed is kept secret, and the algorithm is well designed, the
bits output by the DRBG will be unpredictable, up to the instantiated security strength of
the DRBG.

The security provided by an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its source of entropy input must be
considered when determining whether the RBG is appropriate for use by consuming
applications.

3 Scope

This Recommendation includes:

1. Requirements for the use of DRBG mechanisms,

2. Specifications for DRBG mechanisms that use hash functions, block ciphers and
number theoretic problems,

3. Implementation issues, and

4. Assurance considerations.

This Recommendation specifies several diverse DRBG mechanisms, all of which provided
acceptable security when this Recommendation was published. However, in the event that
new attacks are found on a particular class of DRBG mechanisms, a diversity of Approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their ability
to communicate. Therefore, an entity may choose a single appropriate DRBG mechanism
for their consuming applications; see Annex G for a discussion of DRBG mechanism
selection.

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number
Generators.

2 DRBGS have also been called Pseudorandom Bit Generators.

NIST SP 800-90 June 2006

3

The precise structure, design and development of a random bit generator is outside the
scope of this Recommendation.

This Recommendation also provides preliminary guidance on the selection of an entropy
source and the construction of an RBG from an entropy source and an Approved DRBG
mechanism. Additional guidance is under development in these areas.

4 Terms and Definitions

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS approved, NIST Recommended and/or validated by the
Cryptographic Module Validation Program (CMVP).

Backtracking Resistance The assurance that the output sequence from an RBG remains
indistinguishable from an ideal random sequence even to an
attacker who compromises the RBG in the future, up to the
claimed security strength of the RBG. For example, an RBG
that allowed an attacker to "backtrack" from the current
working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is
called Prediction Resistance.

Biased A value that is chosen from a sample space is said to be biased
if one value is more likely to be chosen than another value.
Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost
bit is the most significant bit of the string and is the newest bit
generated. The rightmost bit is the least significant bit of the
string.

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

Block Cipher A symmetric key cryptographic algorithm that transforms a
block of information at a time using a cryptographic key. For
a block cipher algorithm, the length of the input block is the
same as the length of the output block.

Conditioned Entropy
Source

An entropy source that either includes a conditioning function
or for which conditioning is performed on the output of the
entropy source. The conditioning function ensures that the
conditioned entropy source provides full entropy bitstrings.

NIST SP 800-90 June 2006

4

Consuming Application The application (including middle ware) that uses random
numbers or bits obtained from an Approved random bit
generator.

Cryptographic Key (Key) A parameter that determines the operation of a cryptographic
function such as:

1. The transformation from plaintext to ciphertext and
vice versa,

2. The generation of keying material,

3. A digital signature computation or verification.

Deterministic Algorithm An algorithm that, given the same inputs, always produces the
same outputs.

Deterministic Random
Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and a source of
entropy input. The DRBG produces a pseudorandom sequence
of bits from a secret initial value called a seed, along with
other possible inputs. A DRBG is often called a
Pseudorandom Number (or Bit) Generator.

DRBG Mechanism
Boundary

A conceptual boundary that is used to explain the operations
of a DRBG mechanism and its interaction with and relation to
other processes.

DRBG Mechanism The portion of an RBG that includes the functions necessary
to instantiate and uninstantiate the RBG, generate
pseudorandom bits, (optionally) reseed the RBG and test the
health of the the DRBG mechanism.

Entropy A measure of the disorder, randomness or variability in a
closed system. The entropy of X is a mathematical measure of
the amount of information provided by an observation of X.
As such, entropy is always relative to an observer and his or
her knowledge prior to an observation. Also, see min-entropy.

Entropy Input The input to a DRBG mechanism of a string of bits that
contains entropy; tha t is, the entropy input is digitized and has
been assessed prior to use as input.

Entropy Source A source of unpredictable data. There is no assumption that
the unpredictable data has a uniform distribution. The entropy
source includes a noise source, such as thermal noise or hard
drive seek times; a digitization process; an assessment
process; an optional conditioning process and health tests.
Contrast with the Source of Entropy Input.

NIST SP 800-90 June 2006

5

Equivalent Process Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

Exclusive-or A mathematical operation; the symbol ⊕, defined as:

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0.

Equivalent to binary addition without carry.

Full Entropy Each bit of a bitstring with full entropy is unpredictable (with
a uniform distribution) and independent of every other bit of
that bitstring.

Hash Function A (mathematical) function that maps values from a large
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Health Testing Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and as validated (if
implementation validation was performed).

Implementation An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform.

Implementation Testing
for Validation

Testing by an independent and accredited party to ensure that
an implemention of this Recommendation conforms to the
specifications of this Recommendation.

Instantiation of an RBG An instantiation of an RBG is a specific, logically
independent, initialized RBG. One instantiation is
distinguished from another by a handle (e.g., an identifying
number).

Internal State The collection of stored information about a DRBG
instantiation. This can include both secret and non-secret
information.

NIST SP 800-90 June 2006

6

Key See Cryptographic Key.

Min-entropy The worst-case (i.e., the greatest lower bound) measure of
uncertainty for a random variable.

Non-Deterministic
Random Bit Generator
(Non-deterministic RBG)
(NRBG)

An RBG that produces output that is fully dependent on some
unpredictable physical source that produces entropy. Contrast
with a DRBG. Other names for non-deterministic RBGs are
True Random Number (or Bit) Generators and, simply,
Random Number (or Bit) Generators.

Nonce A time-varying value that has at most a negligible chance of
repeating, e.g., a random value that is generated anew for each
use, a timestamp, a sequence number, or some combination of
these.

Personalization String An optional string of bits that is combined with a secret input
and (possibly) a nonce to produce a seed.

Prediction Resistance Assurance that a compromise of the DRBG internal state has
no effect on the security of future DRBG outputs. That is, an
adversary who is given access to all of the output sequence
after the compromise cannot distinguish it from random; if the
adversary knows only part of the future output sequence, he
cannot predict any bit of that future output sequence that he
has not already seen. The complementary assurance is called
Backtracking Resistance.

Pseudorandom A process (or data produced by a process) is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random as long as the internal action of the process
is hidden from observation. For cryptographic purposes,
“effectively” means “within the limits of the intended
cryptographic strength.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Public Key In an asymmetric (public) key cryptosystem, that key of an
entity’s key pair that is publicly known.

Public Key Pair In an asymmetric (public) key cryptosystem, the public key
and associated private key.

Random Number For the purposes of this Recommendation, a value in a set that
has an equal probability of being selected from the total
population of possibilities and, hence, is unpredictable. A

NIST SP 800-90 June 2006

7

random number is an instance of an unbiased random variable,
that is, the output produced by a uniformly distributed random
process.

Random Bit Generator
(RBG)

A device or algorithm that outputs a sequence of binary bits
that appears to be statistically independent and unbiased. An
RBG is either a DRBG or an NRBG.

Reseed To aquire additional bits with sufficient entropy for the
desired security strength.

Security Strength A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system; a security strength is specified in bits and
is a specific value from the set (112, 128, 192, 256) for this
Recommendation. The amount of work needed is
2security_strength .

Seed Noun : A string of bits that is used as input to a DRBG
mechanism. The seed will determine a portion of the internal
state of the DRBG, and its entropy must be sufficient to
support the security strength of the DRBG.
Verb : To aquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
mechanism to determine a portion of the initial internal state.
Also see reseed.

Seedlife The length of the seed period.

Seed Period The period of time between initializing or reseeding a DRBG
with one seed and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.

Should Used to indicate a highly desirable feature for a DRBG
mechanism that is not necessarily required by this
Recommendation.

Source of Entropy Input The source of the entropy input for a DRBG mechanism.
Contrast with Entropy Source.

String See Bitstring.

Unbiased A value that is chosen from a sample space is said to be
unbiased if all potential values have the same probability of
being chosen. Contrast with biased.

NIST SP 800-90 June 2006

8

Unpredictable In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

Working State A subset of the internal state that is used by a DRBG
mechanism to produce pseudorandom bits at a given point in
time. The working state (and thus, the internal state) is
updated to the next state prior to producing another string of
pseudorandom bits.

5 Symbols and Abbreviated Terms

The following abbreviations are used in this Recommendation:

Abbreviation Meaning
AES Advanced Encryption Standard.
DRBG Deterministic Random Bit Generator.

ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.

HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this Recommendation:

Symbol Meaning

+ Addition

X Ceiling: the smallest integer ≥ X. For example, 5 = 5, and 3.5 = 6.

X Floor: The largest integer less than or equal to X. For example, 5 = 5, and
5.3 = 5.

X ⊕ Y Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and
Y of the same length.

X || Y Concatenation of two strings X and Y. X and Y are either both bitstrings, or
both byte strings.

gcd (x, y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

NIST SP 800-90 June 2006

9

Symbol Meaning

x mod n The unique remainder r (where 0 ≤ r ≤ n-1) when integer x is divided by n. For
example, 23 mod 7 = 2.

Used in a figure to illustrate a "switch" between sources of input.

{a1, ...ai} The internal state of the DRBG at a point in time. The types and number of the
ai depends on the specific DRBG mechanism.

0xab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of information,
where a and b each specify 4 bits of information and have values from the
range {0, 1, 2,…F}. For example, 0xc6 is used to represent 11000110, where c
is 1100, and 6 is 0110.

0x A string of x zero bits.

6 Document Organization

This Recommendation is organized as follows:

 Section 7 provides a functional model for an RBG that uses a DRBG mechanism
and discusses the major components of the DRBG mechanim.

 Section 8 provides concepts and general requirements for the implementation and
use of a DRBG mechanism.

 Section 9 specifies the functions of a DRBG mechanism that are introduced in
Section 8. These functions use the DRBG algorithms specified in Section 10.

 Section 10 specifies Approved DRBG algorithms. Algorithms have been specified
that are based on the hash functions specified in FIPS 180-2 (Secure Hash
Standard), block cipher algorithms specified in FIPS 197 and NIST Special
Publication 800-67 (AES and TDEA, respectively), and a number theoretic problem
that is expressed in elliptic curve technology.

 Section 11 addresses assurance issues for DRBG mechanisms, including
documentation requirements, implementation validation and health testing,

This Recommendation also includes the following appendices:

 Appendix A specifies additional information that is specific to one of the DRBG
mechanisms.

 Appendix B provides conversion routines.

 Appendix C provides guidance on entropy and entropy sources.

 Appendix D provides guidance on the construction of a random bit generator from
an entropy source and a DRBG mechanism.

NIST SP 800-90 June 2006

10

 Appendix E discusses security considerations when extracting bits in one of the
DRBG mechanisms .

 Appendix F provides example pseudocode for each DRBG mechanism.

 Appendix G provides a discussion on DRBG mechanism selection.

 Appendix H provides references.

NIST SP 800-90 June 2006

11

7 Functional Model

Figure 1 provides a functional model of an RBG. An RBG that uses a DRBG mechanism
includes a source of entropy input and, depending on the implementation of the DRBG
mechanism, includes a nonce source. The components of this model are discussed in the
following subsections.

7.1 Entropy Input

The entropy input is provided to a DRBG mechanism for the seed (see Section 8.6). The
entropy input and the seed shall be kept secret. The secrecy of this information provides the
basis for the security of the RBG. At a minimum, the entropy input shall provide the
amount of entropy requested by the DRBG mechanism. Appropriate sources for the entropy
input are discussed in Section 8.6.5.

Ideally, the entropy input will have full entropy; however, the DRBG mechanisms have
been specified to allow for some bias in the entropy input by allowing the length of the

Figure 1: RBG Functional Model

NIST SP 800-90 June 2006

12

entropy input to be longer than the required amount of entropy (expressed in bits). The
entropy input can be defined to be a variable length (within limits), as well as fixed length.
In all cases, the DRBG mechanism expects that when entropy input is requested, the
returned bitstring will contain at least the requested amount of entropy. Additional entropy
beyond the amount requested is not required, but is desirable.

7.2 Other Inputs

Other information may be obtained by a DRBG mechanism as input. This information may
or may not be required to be kept secret by a consuming application; however, the security
of the RBG itself does not rely on the secrecy of this information. The information should
be checked for validity when possible ; for example, if time is used as an input, the format
and reasonableness of the time could be checked.

During DRBG instantiation, a nonce may be required, and if used, it is combined with the
entropy input to create the initial DRBG seed. The nonce and its use are discussed in
Sections 8.6.1 and 8.6.7.

This Recommendation strongly advises the insertion of a personalization string during
DRBG instantiation; when used, the personalization string is combined with the entropy
input bits and possibly a nonce to create the initial DRBG seed. The personalization string
should be unique for all instantiations of the same DRBG mechanism type (e.g.,
HMAC_DRBG). See Section 8.7.1 for additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.7.2 for a discussion of this input.

7.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG mechanism uses or acts upon. The internal
state contains both administrative data (e.g., the security strength) and data that is acted
upon and/or modified during the generation of pseudorandom bits (i.e., the working state).

7.4 The DRBG Mechanism Functions

The DRBG mechanism functions handle the DRBG’s internal state. The DRBG
mechanisms in this Recommendation have five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

NIST SP 800-90 June 2006

13

5. The health test function determines that the DRBG mechanism continues to function
correctly.

NIST SP 800-90 June 2006

14

8. DRBG Mechanism Concepts and General Requirements

8.1 DRBG Mechanism Functions

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing
functions. A DRBG mechanism may also include a reseed function. A DRBG shall be
instantiated prior to the generation of output by the DRBG. These functions are specified
in Section 9.

8.2 DRBG Instantiations

A DRBG may be used to obtain
pseudorandom bits for different
purposes (e.g., DSA private keys
and AES keys) and may be
separately instantiated for each
purpose.

A DRBG is instantiated using a seed
and may be reseeded. Each seed
defines a seed period for the DRBG
instantiation; an instantiation
consists of one or more seed periods
that begin when a new seed is
acquired (see Figure 2).

8.3 Internal States

During instantiation, an initial
internal state is derived from the seed. The internal state for an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. A DRBG mechanism
implementation may be designed to handle multiple instantiations. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system int errupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

Figure 2: DRBG Instantiation

NIST SP 800-90 June 2006

15

8.4 Security Strengths Supported by an Instantiation

The DRBG mechanisms specified in this Recommendation support four security strengths:
112, 128, 192 or 256 bits. A security strength for the instantiation is requested by a
consuming application during instantiation, and the instantiate function obtains the
appropriate amount of entropy for the requested security strength. Any security strength
may be requested, but the DRBG will only be instantiated to one of the four security
strengths above, depending on the DRBG implementation. A requested security strength
that is below the 112-bit security strength or is between two of the four security strengths
will be instantiated to the next highest strength (e.g., a requested security strength of 80
bits will result in an instantiation at the 112-bit security strength).

The actual security strength supported by a given instantiation depends on the DRBG
implementation and on the amount of entropy provided to the instantiate function. Note
that the security strength actually supported by a particular instantiation could be less than
the maximum security strength possible for that DRBG implementation (see Table 1). For
example, a DRBG that is designed to support a maximum security strength of 256 bits
could, instead, be instantiated to support only a 128-bit security strength if the additional
security provided by the 256-bit security strength is not required (i.e., by requesting only
128 bits of entropy during instantiation, rather than 256 bits of entropy).
Table 1: Possible Instantiated Security Strengths

Maximum Designed
Security Strength

112 128 192 256

Possible Instantiated
Security Strengths

112 112, 128 112, 128, 192 112, 128, 192,
256

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested during a call to the generate function, up to the
security strength of the instantiation, e.g., an instantiation could be instantiated at the 128-
bit security strength, but a request for pseudorandom bits could indicate that a lesser
security strength is actually required for the bits to be generated. The generate function
checks that the requested security strength does not exceed the security strength for the
instantiation. Assuming that the request is valid, the requested number of bits is returned.

When an instant iation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.5 DRBG Mechanism Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG mechanism
boundary” to explain the operations of a DRBG mechanism and its interaction with and

NIST SP 800-90 June 2006

16

relation to other processes; a DRBG mechanism boundary contains all DRBG mechanism
functions and internal states required for a DRBG. Data enters a DRBG mechanism
boundary via the DRBG’s public interfaces, which are made available to consuming
applications.

Within a DRBG mechanism boundary,

1. The DRBG internal state and the operation of the DRBG mechanism functions
shall only be affected according to the DRBG mechanism specification.

2. The DRBG internal state shall exist solely within the DRBG mechanism boundary.
The internal state shall be contained within the DRBG mechanism boundary and
shall not be accessed by non-DRBG functions or other instantiations of that or
other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG mechanism boundary, except as specified for the DRBG
pseudorandom bit outputs.

Each DRBG mechanism includes one or more cryptographic primitives (e.g., a hash
function). Other applications may use the same cryptographic primitive as long as the
DRBG’s internal state and the DRBG mechanism functions are not affected.

A DRBG mechanism’s functions may be
contained within a single device, or may be
distributed across multiple devices (see
Figures 3 and 4). Figure 3 depicts a DRBG for
which all functions are contained within the
same device. Figure 4 provides an example of
DRBG mechanism functions that are
distributed across multiple devices. In this
latter case, each device has a DRBG
mechanism sub-boundary that contains the
DRBG mechanism functions implemented on
that device. The boundary around the entire
DRBG mechanism shall include the
aggregation of sub-boundaries providing the
DRBG mechanism functionality. The use of
distributed DRBG mechanism functions may
be convenient for restricted environments
(e.g., smart card applications) in which the
primary use of the DRBG does not require
repeated use of the instantiate or reseed
functions.

DRBG Mechanism Boundary

Entropy
Input

States

Instantiate

Reseed
Instantiation

Request Bits

Test
Function

Uninstantiate
DRBG Uninstantiate

Function

Test
DRBG

Generate
Function

Reseed
Function

Instantiate
Function

Figure 3: DRBG Mechanism Functions
within a Single Device

NIST SP 800-90 June 2006

17

Each DRBG mechanism boundary or sub-boundary shall contain a test function to test the
“health” of other DRBG mechanism functions within that boundary. In addition, each
boundary or sub-boundary shall contain an uninstantiate function in order to perform
and/or react to health testing.

When DRBG mechanism functions are distributed, appropriate mechanisms shall be used
to protect the confidentiality and integrity of the internal state or parts of the internal state
that are transferred between the distributed DRBG mechanism sub-boundaries. The
confidentiality and integrity mechanisms and security strength shall be consistent with the
data to be protected by the DRBG’s consuming application (see SP 800-57).

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state.

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good way of addressing the threat of
either the DRBG seed, entropy input or working state being compromised over time. In
some implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new
seed in the process (e.g., obtain a new smart card).

The seed and its use by a DRBG mechanism shall be generated and handled as specified in
the following subsections.

8.6.1 Seed Construction for Instantiation

DRBG Mechanism Sub-Boundary
(Instantiate)

DRBG Mechanism Sub-Boundary
(Generate)

Instantiate
Function

Test
Function

Generate
Function

Protected State

Entropy Input

Test
Function

DRBG Mechanism Boundary

Uninstantiate
Function

Figure 4: Distributed DRBG Mechanism Functions

NIST SP 800-90 June 2006

18

Figure 5 depicts the seed construction
process for instantiation. The seed
material used to determine a seed for
instantiation consists of entropy input,
a nonce and an optional
personalization string. Entropy input
shall always be used in the
construction of a seed; requirements
for the entropy input are discussed in
Section 8.6.3. Except for the case
noted below, a nonce shall be used;
requirements for the nonce are
discussed in Section 8.6.7. A
personalization string should also be
used; requirements for the
personalization string are discussed in Section 8.7.1.

Depending on the DRBG mechanism and the source of the entropy input, a derivation
function may be required to derive a seed from the seed material. However, in certain
circumstances, the DRBG mechanism based on block cipher algorithms (see Section 10.2)
may be implemented without a derivation function. When implemented in this manner, a
(separate) nonce (as shown in Figure 5) is not used. Note, however, that the personalization
string could contain a nonce, if desired.

8.6.2 Seed Construction for Reseeding

Figure 6 depicts the seed construction
process for reseeding an instantiation.
The seed material for reseeding consists
of a value that is carried in the internal
state3, new entropy input and, optionally,
additional input. The internal state value
and the entropy input are required;
requirements for the entropy input are
discussed in Section 8.6.3. Requirements
for the additional input are discussed in
Section 8.7.2. As in Section 8.6.1, a
derivation function may be required for
reseeding. See Section 8.6.1 for further
guidance.

8.6.3 Entropy Requirements for the Entropy Input

The entropy input shall have entropy that is equal to or greater than the security strength of
the instantiation. Additional entropy may be provided in the nonce or the optional

3 See each DRBG mechanism specification for the value that is used.

Seed

Entropy
Input

Nonce
(Optional)

Personalization
String

Opt.
df

Figure 5: Seed Construction for Instantiation

Entropy
Input

(Optional)
Additional

Input

Opt.
df

Seed

Internal State
Value

Figure 6: Seed Construction for Reseeding

NIST SP 800-90 June 2006

19

personalization string during instantiation, or in the additional input during reseeding and
generation, but this is not required. The use of more entropy than the minimum value will
offer a security “cushion”. This may be useful if the assessment of the entropy provided in the
entropy input is incorrect. Having more entropy than the assessed amount is acceptable;
having less entropy than the assessed amount could be fatal to security. The presence of more
entropy than is required, especially during the instantiatiation, will provide a higher level of
assurance than the minimum required entropy.

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG mechanism and the security
strength required by the consuming application. See Section 10.
8.6.5 Source of Entropy Input

The source of the entropy input shall be either:

1. An Approved NRBG,

2. An Approved DRBG, thus forming a chain of at least two DRBGs; the highest-
level DRBG in the chain shall be seeded by an Approved NRBG or an entropy
source, or

3. An appropriate entropy source.

Further discussion about entropy and entropy sources is provided in Appendix C;
discussion on RBG construction is provided in Appendix D.
8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent
with the security required for the data protected by the consuming application. For
example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to
generate the keys shall (at a minimum) be protected as well as the keys.
8.6.7 Nonce

A nonce may be required in the construction of a seed during instantation in order to
provide a security cushion to block certain attacks. The nonce shall be either:

a. An unpredictable value with at least (1/2 security_strength) bits of entropy,

b. A value that is expected to repeat no more often than a (1/2 security_strength)-bit
random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time as the
entropy input. In this case, the seed could be considered to be constructed from an “extra
strong” entropy input and the optional personalization string, where the entropy for the
entropy input is equal to or greater than (3/2 security_strength) bits.

The nonce ensures that the DRBG provides security_strength bits of security to the
consuming application. When a DRBG is instantiated many times without a nonce, a
compromise may become more likely. In some consuming applications, a single DRBG

NIST SP 800-90 June 2006

20

compromise may reveal long-term secrets (e.g., a compromise of the DSA per-message
secret reveals the signing key).

8.6.8 Reseeding

Generating too many outputs from a seed (and other input information) may provide
sufficient information for successfully predicting future outputs (see Section 8.8). Periodic
reseeding will reduce security risks, reducing the likelihood of a compromise of the data
that is protected by cryptographic mechanisms that use the RBG.

Seeds shall have a finite seedlife (i.e., the number of blocks or outputs that are produced
during a seed period); the maximum seedlife is dependent on the DRBG mechanism used.
Reseeding is accomplished by 1) an explicit reseeding of the DRBG by the consuming
application, or 2) by the generate function when prediction resistance is requested (see
Section 8.8) or the limit of the seedlife is reached.

Reseeding of the DRBG shall be performed in accordance with the specification for the
given DRBG mechanism. The DRBG reseed specifications within this Recommendation
are designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

An alternative to reseeding is to create an entirely new instantiation. However, reseeding is
preferred over creating a new instantiation. If a DRBG instantiation was initially seeded
with sufficient entropy, and the source of entropy input subsequently fails without being
detected, then a new instantiation using the same (failed) source of entropy input would not
have sufficient entropy to operate securely. However, if there is an undetected failure in the
source of entropy input of an already properly seeded DRBG instantiation, the DRBG
instantiation will still retain any previous entropy when the reseed operation fails to
introduce new entropy.
8.6.9 Entropy Input and Seed Use

The entropy input and seed that is used to initialize one instantiation of a DRBG shall not
be intentionally used to reseed the same instantiation or used as the entropy input and seed
for another DRBG instantiation. Note that a DRBG does not provide output until a seed is
available, and the internal state has been initialized (see Section 10).
8.6.10 Entropy Input and Seed Separation

The seed used by a DRBG and the entropy input used to create that seed shall not
intentionally be used for other purposes (e.g., domain parameter or prime number
generation).

8.7 Other Inputs to the DRBG Mechanism

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided.

NIST SP 800-90 June 2006

21

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes), or the input could be the output of another
RBG.
8.7.1 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.6.1). The intent of a personalization string is to differentiate this DRBG
instantiation from all other instantiations that might ever be created. The personalization
string should be set to some bitstring that is as unique as possible, and may include secret
information. Secret information should not be used in the personalization string if it
requires a level of protection that is greater than the intended security strength of the
DRBG instantiation. Good choices for the personalization string contents include:

• Device serial numbers,

• Public keys,

• User identification,

• Private keys,

• PINs and passwords,

• Secret per-module or per-device
values,

• Timestamps,

• Network addresses,

• Special secret key values for this specific
DRBG instantiation,

• Application identifiers,

• Protocol version identifiers,

• Random numbers, and

• Nonces.

8.7.2 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional, and the ability to enter additional input may or may
not be included in an implementation. Additional input may be either secret or publicly
known; its value is arbitrary, although its length may be restricted, depending on the
implementation and the DRBG mechanism. The use of additional input may be a means of
providing more entropy for the DRBG internal state that will increase assurance that the
entropy requirements are met. If the additional input is kept secret and has sufficient
entropy, the input can provide more assurance when recovering from the compromise of
the entropy input, the seed or one or more DRBG internal states.

8.8 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance.

NIST SP 800-90 June 2006

22

Suppose that a compromise occurs at Statex, where Statex contains both secret and public
information.

Backtracking Resistance: Backtracking resistance means that a compromise of the DRBG
internal state has no effect on the security of prior outputs. That is, an adversary who is
given access to all of that prior output sequence cannot distinguish it from random with
less work than is associated with the security strength of the instantiation; if the adversary
knows only part of the prior output, he cannot determine any bit of that prior output
sequence that he has not already seen.

For example, suppose that an adversary knows Statex. Backtracking resistance means that:

a. The output bits from State1 to Statex-1 cannot be distinguished from random.

b. The prior internal state values themselves (State1 to Statex-1) cannot be recovered,
given knowledge of the secret information in Statex.

Backtracking resistance can be provided by ensuring that the DRBG generate algorithm is
a one-way function. All DRBG mechanisms in this Recommendation have been designed
to provide backtracking resistance.

 Prediction Resistance: Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. That is, an adversary
who is given access to all of the output sequence after the compromise cannot distinguish it
from random with less work than is associated with the security strength of the
instantiation; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he has not already seen.

For example, suppose that an adversary knows Statex: Prediction resistance means that:

a. The output bits from Statex+1 and forward cannot be distinguished from an ideal
random bitstring by the adversary.

b. The future internal state values themselves (Statex+1 and forward) cannot be
predicted, given knowledge of Statex.

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security strength)
must be provided to the DRBG in a way that ensures that knowledge of the current DRBG
internal state does not allow an adversary any useful knowledge about future DRBG

Figure 7: Sequence of DRBG States

NIST SP 800-90 June 2006

23

internal states or outputs. Prediction resistance is provided in this Recommendation by the
use of a prediction resistance flag.

NIST SP 800-90 June 2006

24

9 DRBG Mechanism Functions

Except for the health test function, which is discussed in Section 11.3, the functions of the
DRBG mechanisms in this Recommendation are specified as an algorithm and an
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes
(provided in this section) checks the input parameters, obtains input not provided via the
input parameters, accesses the appropriate DRBG algorithm and handles the internal state.
A function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

During instantiation and reseeding (see Sections 9.1 and 9.2), entropy input is acquired for
constructing a seed as discussed in Sections 8.6.1 and 8.6.2. In the specifications of this
Recommendation, a Get_entropy_input pseudo-function is used for this purpose. The
entropy input shall not be provided by a consuming application as an input parameter in an
instantiate or reseed request. The Get_entropy_input function is not fully specified in this
Recommendation, but has the following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call
is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length,
max_ length),

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBG mechanisms, the min_length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG
and CATASTROPHIC_ERROR_FLAG. These error codes are discussed in Section
11.3.6.

Comments are often included in the pseudocode in this Recommendation. A comment
placed on a line that includes pseudocode applies to that line; a comment placed on a line
containing no pseudocode applies to one or more lines of pseudocode immediately below
that comment.

9.1 Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:

1. Checks the validity of the input parameters,

2. Determines the security strength for the DRBG instantiation,

3. Determines any DRBG mechanism specific parameters (e.g., elliptic curve domain
parameters),

NIST SP 800-90 June 2006

25

4. Obtains entropy input with entropy sufficient to support the security strength,

5. Obtains the nonce (if required),

6. Determines the initial internal state using the instantiate algorithm,

7. If an implemention supports multiple simultaneous instant iations of the same
DRBG, a state_handle for the internal state is returned to the consuming
application (see below).

Let working_state be the working state for the particular DRBG mechanism, and let
min_length, max_ length, and highest_supported_security_strength be defined for each
DRBG mechanism (see Section 10). Let Instantiate_algorithm be a call to the appropriate
instantiate algorithm for the DRBG mechanism (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.

Instantiate_function (requested_instantiation_security_strength,
prediction_resistance_flag, personalization_string):

1. requested_instantiation_security_strength: A requested security strength for the
instantiation. Implementations that support only one security strength do not
require this parameter; however, any consuming application using that
implementation must be aware of the security strength that is supported.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. Implementations that always provide or do not support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such an
implementation. If the prediction_resistance_flag is not needed (i.e., because
prediction resistance is always performed or is not supported), then the
prediction_resistance_flag input parameter and instantiate process step 2 are
omitted, and the prediction_resistance_flag is omitted from the internal state in
step 11 of the instantiate process.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG mechanism
(see Section 10). If the input of a personalization string is not supported, then the
personalization_string input parameter and step 3 of the instantiate process are
omitted, and instantiate process step 9 is modified to omit the personalization
string.

Required information not provided by the consuming application during
instantiation:

NIST SP 800-90 June 2006

26

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG mechanism (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
Get_entropy_input call (see step 6 of the instantiate process); in this case, the first
parameter of the Get_entropy_input call is adjusted to include the entropy for the
nonce (i.e., the security_strength is increased by at least ½ security_strength),
instantiate process step 8 is omitted, and the nonce is omitted from the parameter
list in instantiate process step 9.

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this
case, step 8 is omitted, and the nonce is omitted from the parameter list in
instantiate process step 9.

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

If a state handle is not required for an implementation because the implementation
does not support multiple simultaneous instantiations, a state_handle need not be
returned. In this case, instantiate process step 10 is omitted, process step 11 is
revised to save the only internal state, and process step 12 is altered to omit the
state_handle.

Information retained within the DRBG mechanism boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.3 and 10 for definitions of the working_state and
administrative information).

Instantiate Process:
Comment: Check the validity of the input
parameters.

1. If requested_instantiation_security_strength >
highest_supported_security_strength, then return an ERROR_FLAG.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

3. If the length of the personalization_string > max_personalization_string_length,
return an ERROR_FLAG.

NIST SP 800-90 June 2006

27

4. Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual_EC_DRBG when multiple curves
are available (see Section 10.3.1.2).
Otherwise, the step is omitted.

5. Using security_strength, select appropriate DRBG mechanism parameters.

Comment: Obtain the entropy input.

6. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).

7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working_state.

9. initial_working_state = Instantiate_algorithm (entropy_input, nonce,
personalization_string).

10. Get a state_handle for a currently empty internal state. If an unused internal state
cannot be found, return an ERROR_FLAG.

11. Set the internal state indicated by state_handle to the initial values for the internal
state (i.e., set the working_state to the values returned as initial_working_state in
step 9 and any other values required for the working_state (see Section 10), and set
the administrative information to the appropriate values (e.g., the values of
security_strength and the prediction_resistance_flag).

12. Return SUCCESS and state_handle.

9.2 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a
comsuming application and implementation are able to perform this process. Reseeding
will insert additional entropy into the generation of pseudorandom bits. Reseeding may be:

• explicitly requested by a consuming application,

• performed when prediction resistance is requested by a consuming application,

• triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have
been made (i.e., at the end of the seedlife), or

NIST SP 800-90 June 2006

28

• triggered by external events (e.g., whenever sufficient entropy is ava ilable).

If a reseed capability is not supported, a new DRBG instantiation may be created (see
Section 9.1).

The reseed function:

1. Checks the validity of the input parameters,

2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current working state with the new
entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG instantiation, let
min_length and max_ length be defined for each DRBG mechanism, and let
Reseed_algorithm be a call to the appropriate reseed algorithm for the DRBG mechanism
(see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.

Reseed_function (state_handle, additional_input):

1) state_handle: A pointer or index that indicates the internal state to be reseeded. If a
state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. Since there is only a single internal state in this case, reseed process step 1
obtains the contents of the internal state, and process step 6 replaces the
working_state of this internal state.

2) additional_input : An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the maximum value specified for the given DRBG mechanism (see
Section 10). If the input by a consuming application of additional_input is not
supported, then the input parameter and step 2 of the reseed process are omitted,
and step 5 of the reseed process is modified to remove the additional_input from
the parameter list.

Required information not provided by the consuming application during reseeding:

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG mechanism (see Section 10).

2. Internal state values required by the DRBG for the working_state and
administrative information, as appropriate.

Output to a consuming application after reseeding:
1. status: The status returned from the function. The status will indicate SUCCESS or

an ERROR.

Information retained within the DRBG mechanism boundary after reseeding:

Replaced internal state values (i.e., the working_state).

NIST SP 800-90 June 2006

29

Reseed Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR_FLAG.

2. If the length of the additional_input > max_additional_input_length, return an
ERROR_FLAG.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).

4. If an ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. new_working_state = Reseed_algorithm (working_state, entropy_input,
additional_input).

6. Replace the working_state in the internal state indicated by state_handle with the
values of new_working_state obtained in step 5.

7. Return SUCCESS.

9.3 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding. The
generate function:

1. Checks the validity of the input parameters.

2. Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

3. Generates the requested pseudorandom bits using the generate algorithm.

4. Updates the working state.

5. Returns the requested pseudorandom bits to the consuming application.
9.3.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
Let Generate_algorithm be a call to the appropriate generate algorithm for the DRBG
mechanism (see Section 10), and let Reseed_function be a call to the reseed function in
Section 9.2.

The following or an equivalent process shall be used to generate pseudorandom bits.

NIST SP 800-90 June 2006

30

Generate_function (state_handle, requested_number_of_bits,
requested_security_strength, prediction_resistance_request, additional_input):
1. state_handle: A pointer or index that indicates the internal state to be used. If a

state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. The state_handle is omitted from the input parameter list in process step 7.1,
generate process steps 1 and 7.3 are used to obtain the contents of the internal state,
and process step 10 replaces the working_state of this internal state.

2. requested_number_of_bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of_bits_per_request is implementation
dependent, but shall be less than or equal to the value provided in Section 10 for a
specific DRBG mechanism.

3. requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any consuming
application using that DRBG implementation must be aware of the supported
security strength.

4. prediction_resistance_request : Indicates whether or not prediction resistance is to
be provided during the request. DRBGs that are implemented to always provide
prediction resistance or that do not support prediction resistance do not require this
parameter. However, when prediction resistance is not supported, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request
input parameter and step 5 of the generate process is omitted, and generate process
step 7 is modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and generate process step 5 may be omitted, and generate process
steps 7 and 8 are replaced by:

status = Reseed_function (state_handle, additional_input).

If status indicates an ERROR, then return status.

Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of_bits).

Note that if the input of additional_input is not supported, then the additional_input
parameter in the Reseed call above may be omitted.

5. additional_input : An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG mechanism (see
Section 10). If the input of additional_input is not supported, then the input

NIST SP 800-90 June 2006

31

parameter, generate process steps 4 and 7.4, and the additional_input input
parameter in generate process steps 7.1 and 8 are omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for the working_state and administrative information,
as appropriate.

Output to a consuming application after generation:

1. status: The status returned from the generate function. The status will indicate
SUCCESS or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.

Information retained within the DRBG mechanism boundary after generation:

Replaced internal state values (i.e., the new working_state).

Generate Process:

Comment: Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an inva lid or unused internal state, then return an
ERROR_FLAG.

2. If requested_number_of_bits > max_number_of_bits_per_request, then return an
ERROR_FLAG.

3. If requested_security_strength > the security_strength indicated in the internal
state, then return an ERROR_FLAG.

4. If the length of the additional_input > max_additional_input_length, then return an
ERROR_FLAG.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR_FLAG.

6. Clear the reseed_required_flag. Comment: See Section 9.3.2 for discussion.

Comment: Reseed if necessary (see Section
9.2).

7. If reseed_required_flag is set, or if prediction_resistance_request is set, then

7.1 status = Reseed_function (state_handle, additional_input).

7.2 If status indicates an ERROR, then return status.

7.3 Using state_handle, obtain the new internal state.

7.4 additional_input = the Null string.

7.5 Clear the reseed_required_flag.

NIST SP 800-90 June 2006

32

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of_bits, additional_input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed_required_flag.

9.2 Go to step 7.

10. Replace the old working_state in the internal state indicated by state_handle with
the values of new_working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not supported, or a reseed is not desired, then generate process
steps 6 and 7 are removed; and generate process step 9 is replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate_function (state_handle).

9.2 Return an indication that the DRBG instantiation can no longer be used.

9.3.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function
checks whether or not a reseed is required by comparing the counter within the internal
state (see Section 8.3) against a predetermined reseed interval for the DRBG
implementation. This is specified in the generate process (see Section 9.3.1) as follows:

a. Step 6 clears the reseed_required_flag.

b. Step 7 checks the value of the reseed_required_flag. At this time, the
reseed_required_flag is clear, so step 7 is skipped unless prediction resistance was
requested by the consuming application. For the purposes of this explanation,
assume that prediction resistance was not requested.

c. Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If
it is required, an appropriate status is returned.

d. Step 9 checks the status returned by the Generate_algorithm. If the status does
not indicate that a reseed is required, the generate process continues with step 10.

e. However, if the status indicates that a reseed is required, then the
reseed_required_flag is set, and processing continues by going back to step 7 (see
steps 9.1 and 9.2).

NIST SP 800-90 June 2006

33

f. The substeps in step 7 are executed. The reseed function is called; any
additional_input provided by the consuming application in the generate request is
used during reseeding. The new values of the internal state are acquired, any
additional_input provided by the consuming application in the generate request is
replaced by a Null string, and the reseed_required_flag is cleared.

g. The generate algorithm is called (again) in step 8, the check of the returned status is
made in step 9, and (presumably) step 10 is then executed.

9.3.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction
resistance, the generate function specified in Section 9.3.1 checks that the instantiation
allows prediction resistance requests (see step 5 of the generate process); clears the
reseed_required_flag (even though the flag won’t be used in this case); executes the
substeps of generate process step 7, resulting in a reseed, a new internal state for the
instantiation, and setting the additional input to a Null value; obtains pseudorandom bits
(see generate process step 8); passes through generate process step 9, since another reseed
will not be required; and continues with generate process step 10.

9.4 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing (i.e., zeroizing)
the contents of the internal state. The uninstantiate function:

1. Checks the input parameter for validity.

2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Uninstantiate_function (state_handle) :

1. state_handle: A pointer or index that indicates the internal state to be “released”. If
a state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. In this case, process step 1 is omitted, and process step 2 erases the internal
state.

Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR_FLAG.

Information retained within the DRBG mechanism boundary after uninstantiation:

An empty internal state.

Uninstantiate Process:

1. If state_handle indicates an invalid state, then return an ERROR_FLAG.

NIST SP 800-90 June 2006

34

2. Erase the contents of the internal state indicated by state_handle.

3. Return SUCCESS.

NIST SP 800-90 Hash_DRBG June 2006

35

10 DRBG Algorithm Specifications

Several DRBG mechanisms are specified in this Recommendation. The selection of a
DRBG mechanism depends on several factors, including the security strength to be
supported and what cryptographic primitives are available. An analysis of the consuming
application’s requirements for random numbers should be conducted in order to select an
appropriate DRBG mechanism. A detailed discussion on DRBG mechanism selection is
provided in Appendix G. Pseudocode examples for each DRBG mechanism are provided
in Appendix F. Conversion specifications required for the DRBG mechanism
implementations (e.g., between integers and bitstrings) are provided in Appendix B.

10.1 DRBG Mechanisms Based on Hash Functions

A DRBG mechanism may be based on a hash function that is non-invertible or one-way.
The hash-based DRBG mechanisms specified in this Recommendation have been designed
to use any Approved hash function and may be used by consuming applications requiring
various security strengths, providing that the appropriate hash function is used and
sufficient entropy is obtained for the seed.

The following are provided as DRBG mechanisms based on hash functions:

1. The Hash_DRBG specified in Section 10.1.1.

2. The HMAC_DRBG specified in Section 10.1.2.

The maximum security strength that can be supported by each DRBG based on a hash
function is the security strength of the hash function used; the security strengths for the
hash functions when used for random number generation are provided in SP 800-57.
However, this Recommendation supports only four security strengths: 112, 128, 192, and
256 bits. Table 2 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each Approved hash function.
Table 2: Definitions for Hash-Based DRBG Mechanisms

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57

Output Block Length (outlen) 160 224 256 384 512

Required minimum entropy for
instantiate and reseed

security_strength

Minimum entropy input length
(min_length)

security_strength

Maximum entropy input length
(max_ length)

≤ 235 bits

Seed length (seedlen) for
Hash_DRBG

440 440 440 888 888

NIST SP 800-90 Hash_DRBG June 2006

36

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Maximum personalization string
length
(max_personalization_string_length)

≤ 235 bits

Maximum additional_input length
(max_additional_input_length)

≤ 235 bits

max_number_of_bits_per_request ≤ 219 bits

Number of requests between
reseeds (reseed_interval)

≤ 248

Note that since SHA-224 is based on SHA-256, and SHA-384 is based on SHA-512, there
is no efficiency benefit for using SHA-224 or SHA-384.

The value for seedlen for Hash_DRBG is determined by subtracting the count field (in the
hash function specification) and one byte of padding from the hash function input block
length; in the case of SHA-1, SHA-224 and SHA 256, seedlen = 512 - 64 - 8 = 440; for
SHA-384 and SHA-512, seedlen = 1024 - 128 - 8 = 888.
10.1.1 Hash_DRBG

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The
Hash_DRBG requires the use of a hash function during the instantiate, reseed and
generate functions; the same hash function shall be used throughout a Hash_DRBG
instantiation. Hash_DRBG uses the derivation function specified in Section 10.4.1 during
instantiation and reseeding. The hash function to be used shall meet or exceed the desired
security strength of the consuming application.
10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:

1. The working_state:

a. A value (V) of seedlen bits that is updated during each call to the DRBG.

b. A constant C of seedlen bits that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation
or reseeding.

2. Administrative information:

a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

NIST SP 800-90 Hash_DRBG June 2006

37

The values of V and C are the critical
values of the internal state upon which
the security of this DRBG mechanism
depends (i.e., V and C are the “secret
values” of the internal state).
10.1.1.2 Instantiation of Hash_DRBG

Notes for the instantiate function
specified in Section 9.1:

The instantiation of Hash_DRBG
requires a call to the instantiate
function. Process step 9 of that
function calls the instantiate
algorithm in this section. For this
DRBG mechanism, instantiate
process step 5 is omitted.

The values of
highest_supported_security_strength
and min_length are provided in Table
2 of Section 10.1. The contents of the
internal state are provided in Section
10.1.1.1.

The instantiate algorithm:

Let Hash_df be the hash derivation
function specified in Section 10.4.1
using the selected hash function. The
output block length (outlen), seed
length (seedlen) and appropriate
security_strengths for the
implemented hash function are provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1).

Hash_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string is not supported, then Hash_DRBG
instantiate process step 1 is modified to remove the personalization_string.

Output:

Figure 8: Hash_DRBG

V C
reseed
counter

(Opt.)
additional

input

Hash
Function

+
If additional
input ≠ Null + +

+1

Pseudorandom BitsHash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits

Hash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits V reseed

counter

C ctr

C

V

|| additional
inputV ||0x02 || additional
inputV ||0x02

V

Hash
Function

0x03 || V

+

NIST SP 800-90 Hash_DRBG June 2006

38

1. initial_working_state: The inital values for V, C, and reseed_counter (see
Section 10.1.1.1).

Hash_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. seed = Hash_df (seed_material, seedlen).

3. V = seed.

4. C = Hash_df ((0x00 || V), seedlen). Comment: Precede V with a byte of
zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter as the initial_working_state.
10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using the
selected hash function. The value for seedlen is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see step 5 of the reseed process in Section 9.2):

Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then step 1 of the Hash_DRBG reseed process is modified to
remove the additional_input.

Output:

1. new_working_state: The new values for V, C, and reseed counter.

Hash_DRBG Reseed Process:

1. seed_material = 0x01 || V || entropy_input || additional_input.

2. seed = Hash_df (seed_material, seedlen).

3. V = seed.

NIST SP 800-90 Hash_DRBG June 2006

39

4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all
zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter for the new_working_state.

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of_bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided in Table 2 of Section 10.1.
Note that for this DRBG mechanism, the reseed counter is used to update the value of
V as well as to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then step 2 of the Hash_DRBG generate process is omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. new_working_state: The new values for V, C, and reseed_counter.

Hash_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input ≠ Null), then do

NIST SP 800-90 Hash_DRBG June 2006

40

2.1 w = Hash (0x02 || V || additional_input).

2.2 V = (V + w) mod 2seedlen.

3. (returned_bits) = Hashgen (requested_number_of_bits, V).

4. H = Hash (0x03 || V).

5. V = (V + H + C + reseed_counter) mod 2seedlen.

6. reseed_counter = reseed_counter + 1.

7. Return SUCCESS, returned_bits, and the new values of V, C, and
reseed_counter for the new_working_state.

Hashgen (...):

Input:

1. requested_no_of_bits: The number of bits to be returned.

2. V: The current value of V.

Output:

 1. returned_bits: The generated bits to be returned to the generate function.

Hashgen Process:

1.

=

outlen
bitsofnorequested

m

.

2. data = V.

3. W = the Null string.

4. For i = 1 to m

4.1 wi = Hash (data).

4.2 W = W || wi.

4.3 data = (data + 1) mod 2seedlen.

5. returned_bits = Leftmost (requested_no_of_bits) bits of W.

6. Return returned_bits.

NIST SP 800-90 HMAC_DRBG June 2006

41

10.1.2 HMAC_DRBG

HMAC_DRBG uses multiple occurrences of an Approved keyed hash function, which is
based on an Approved hash function. This DRBG mechanism uses the Update function
specified in Section 10.1.2.2 and the HMAC function within the Update function as the
derivation function during instantiation and reseeding. The same hash function shall be
used throughout an HMAC_DRBG
instantia tion. The hash function used shall
meet or exceed the security requirements
of the consuming application.

Figure 9 depicts the HMAC_DRBG in
three stages. HMAC_DRBG is specified
using an internal function (Update). This
function is called during the
HMAC_DRBG instantiate, generate and
reseed algorithms to adjust the internal
state when new entropy or additional input
is provided, as well as to update the
internal state after pseudorandom bits are
generated. The operations in the top
portion of the figure are only performed if
the additional input is not null. Figure 10
depicts the Update function.

10.1.2.1 HMAC_DRBG Internal State

The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output
are produced (where outlen is
specified in Table 2 of Section
10.1).

b. The Key of outlen bits, which
is updated at least once each
time that the DRBG
mechanism generates
pseudorandom bits.

c. A counter (reseed_counter)
that indicates the number of
requests for pseudorandom bits since instantiation or reseeding.

2. Administrative information:

(Opt) additional input

If ≠ Null

UPDATE

Key V reseed
counter

...

State

Key V reseed
counter

...

State

HMAC

V

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi -1

UPDATEKey V reseed
counter

...

State

+ 1

additional input

V Key

Figure 9: HMAC_DRBG Generate Function

NIST SP 800-90 HMAC_DRBG June 2006

42

a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of V and Key are the critical values of the internal state upon which the security
of this DRBG mechanism depends (i.e., V and Key are the “secret values” of the internal
state).
10.1.2.2 The Update Function (Update)

The Update function updates the internal
state of HMAC_DRBG using the
provided_data. Note that for this DRBG
mechanism, the Update function also
serves as a derivation function for the
instantiate and reseed functions.

Let HMAC be the keyed hash function
specified in FIPS 198 using the hash
function selected for the DRBG
mechanism from Table 2 in Section 10.1.

The following or an equivalent process
shall be used as the Update function.

Update (provided_data, K, V):

1. provided_data: The data to be
used.

2. K: The current value of Key.

3. V: The current value of V.

Output:

1. K: The new value for Key.

2. V: The new value for V.

HMAC_DRBG Update Process:

1. K = HMAC (K, V || 0x00 || provided_data).

2. V = HMAC (K, V).

3. If (provided_data = Null), then return K and V.

4. K = HMAC (K, V || 0x01 || provided_data).

5. V = HMAC (K, V).

6. Return K and V.

Figure 10: HMAC_DRBG Update Function

NIST SP 800-90 HMAC_DRBG June 2006

43

10.1.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of HMAC_DRBG requires a call to the instantiate function. Process
step 9 of that function calls the instantiate algorithm specified in this section. For this
DRBG mechanism, instantiate process step 5 is omitted. The values of
highest_supported_security_strength and min _length are provided in Table 2 of
Section 10.1. The contents of the internal state are provided in Section 10.1.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.2.2. The output block length
(outlen) is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):

HMAC_DRBG_Instantiate_algorithm (entropy_input, nonce,
personalization_string):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. If the input of a personalization_string is not supported by an
implementation, then step 1 of the HMAC_DRBG instantiate process is
modified to remove the personalization_string.

Output:

1. initial_working_state: The inital values for V, Key and reseed_counter (see
Section 10.1.2.1).

HMAC_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. Key = 0x00 00...00. Comment: outlen bits.

3. V = 0x01 01...01. Comment: outlen bits.

Comment: Update Key and V.

4. (Key, V) = Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return V, Key and reseed_counter as the initial_working_state.
10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

NIST SP 800-90 HMAC_DRBG June 2006

44

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.2.2. The following process or its
equivalent shall be used as the reseed algorithm for this DRBG mechanism (see step 5
of the reseed process in Section 9.2):

HMAC_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then process step 1 of the HMAC_DRBG reseed process is
modified to remove the additional_input.

Output:

1. new_working_state: The new values for V, Key and reseed_counter.

HMAC_DRBG Reseed Process:

1. seed_material = entropy_input || additional_input.

2. (Key, V) = Update (seed_material, Key, V).

3. reseed_counter = 1.

4. Return V, Key and reseed_counter as the new_working_state.

10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of_bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG mechanism. The value for reseed_interval is defined in Table 2
of Section 10.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

HMAC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

NIST SP 800-90 HMAC_DRBG June 2006

45

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then step 2 of the HMAC_DRBG generate process is omitted.
If the implementation allows additional_input, but a given request does not
provide any additional_input or additional_input is not supported, then a Null
string shall be used as the additional_input in step 6 of the HMAC_DRBG
generate process.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. new_working_state: The new values for V, Key and reseed_counter.

HMAC_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If additional_input ≠ Null, then (Key, V) = Update (additional_input, Key, V).

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = HMAC (Key, V).

4.2 temp = temp || V.

5. returned_bits = Leftmost requested_number_of_bits of temp.

6. (Key, V) = Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the new_working_state).

NIST SP 800-90 CTR_DRBG June 2006

46

10.2 DRBG Mechanisms Based on Block Ciphers

A block cipher DRBG is based on a block cipher
algorithm. The block cipher DRBG mechanism
specified in this Recommendation has been
designed to use any Approved block cipher
algorithm and may be used by consuming
applications requiring various security strengths,
providing that the appropriate block cipher
algorithm and key length are used, and sufficient
entropy is obtained for the seed.

The maximum security strength that can be
supported by each DRBG based on a block
cipher is the security strength of the block cipher
and key size used; the security strengths for the
block ciphers and key sizes are provided in SP
800-57.

10.2.1 CTR_DRBG

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in SP
800-38A. The same block cipher algorithm and
key length shall be used for all block cipher
operations. The block cipher algorithm and key
length shall meet or exceed the security
requirements of the consuming application.

CTR_DRBG is specified using an internal
function (Update). Figure 11 depicts the
Update function. This function is called by the instantiate, generate and reseed
algorithms to adjust the internal state when new entropy or additional input is provided,
as well as to update the internal state after pseudorandom bits are generated. Figure 12
depicts the CTR_DRBG in three stages. The operations in the top portion of the figure
are only performed if the additional input is not null.

Table 3 specifies the values that shall be used for the function envelopes and DRBG
algorithms.
Table 3: Definitions for the CTR_DRBG

 3 Key
TDEA

AES-128 AES-192 AES-256

Supported security strengths See SP 800-57

Figure 11: CTR_DRBG Update Function

NIST SP 800-90 CTR_DRBG June 2006

47

 3 Key
TDEA

AES-128 AES-192 AES-256

highest_supported_security_strength See SP 800-57

Output block length (outlen) 64 128 128 128

Key length (keylen) 168 128 192 256

Required minimum entropy for
instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen) 232 256 320 384

If a de rivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

≤ 235 bits

Maximum personalization string
length
(max_personalization_string_length)

≤ 235 bits

Maximum additional_input length
(max_additional_input_length)

≤ 235 bits

If a derivation function is not used:

Minimum entropy input length
(min _length = outlen + keylen)

seedlen

Maximum entropy input length
(max _length) (outlen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string_length)

seedlen

Maximum additional_input length
(max_additional_input_length)

seedlen

max_number_of_bits_per_request ≤ 213 ≤ 219

Number of requests between reseeds
(reseed_interval)

≤ 232 ≤ 248

NIST SP 800-90 CTR_DRBG June 2006

48

The CTR_ DRBG may be
implemented to use the block
cipher derivation function
specified in Section 10.4.2
during instantiation and
reseeding. However, the
DRBG mechanism is specified
to allow an implementation
tradeoff with respect to the use
of this derivation function. The
use of the derivation function is
optional if either of the
following is available to
provide entropy input when
requested:

• An Approved RBG with
a security strength equal
to or greater than the
required security
strength of the
CTR_DRBG
instantiation, or

• An Approved
conditioned entropy
source (see the
definition in Section 4).

Otherwise, the derivation
functon shall be used. Table 3
provides the lengths required
for the entropy_input,
personalization_string and
additional_input for each case.

When a derivation function is
not used by an implementation,
the seed construction (see
Section 8.6.1) shall not use a
nonce4.

4 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.

Key V
reseed
counter

...

State

Block
Encrypt

Iterate

Bi

Pseudorandom bits

...B0 || ... || Bi-1

+

1

Figure 12: CTR-DRBG

NIST SP 800-90 CTR_DRBG June 2006

49

When using TDEA as the selected block cipher algorithm, the keys shall be handled as
64-bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA
engine specified in SP 800-67.
10.2.1.1 CTR_DRBG Internal State

The internal state for the CTR_DRBG consists of:

1. The working_state:

a. The value V of outlen bits, which is updated each time another outlen bits of
output are produced.

b. The Key of keylen bits, which is updated whenever a predetermined number of
output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of V and Key are the critical values of the internal state upon which the
security of this DRBG mechanism depends (i.e., V and Key are the “secret values” of the
internal state).

10.2.1.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of
Section 10.2.1. The block cipher operation in step 2.2 of the CTR_DRBG update process
uses the selected block cipher algorithm (also see Section 10.4). Note: the meaning of
Block_Encrypt is discussed in Section 10.4.3.

The following or an equivalent process shall be used as the Update function.

Update (provided_data, Key, V):

1. provided_data: The data to be used. This must be exactly seedlen bits in
length; this length is guaranteed by the construction of the provided_data in
the instantiate, reseed and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.

Output:

1. K: The new value for Key.

NIST SP 800-90 CTR_DRBG June 2006

50

2. V: The new value for V.

CTR_DRBG Update Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V = (V + 1) mod 2outlen.

2.2 output_block = Block_Encrypt (Key, V).

2.3 temp = temp || ouput_block.

3. temp = Leftmost seedlen bits of temp.

4 temp = temp ⊕ provided_data.

5. Key = Leftmost keylen bits of temp.

6. V = Rightmost outlen bits of temp.

7. Return the new values of Key and V.
10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the instantia te function. Process
step 9 of that function calls the instantiate algorithm specified in this section. For this
DRBG mechanism, step 5 antiate function is omitted. The values of
highest_supported_security_strength and min _length are provided in Table 3 of
Section 10.2.1. The contents of the internal state are provided in Section 10.2.1.1.

The instantiate algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let
Update be the function specified in Section 10.2.1.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security_strengths for the
block cipher algorithms are provided in Table 3 of Section 10.2.1.

10.2.1.3.1 The Process Steps for Instantiation When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_string):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. personalization_string: The personalization string received from the
consuming application. If the input of a personalization_string is not
supported by an implementation, then instantiate process steps 1-3 below are
replaced by:

NIST SP 800-90 CTR_DRBG June 2006

51

seed_material = entropy_input.

That is, steps 1-3 collapse into the above step.

Output:

1. initial_working_state: The inital values for V, Key, and reseed_counter (see
Section 10.2.1.1).

CTR_DRBG Instantiate Process:

1. temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen
bits. The maximum length was checked in
Section 9.1, processing step 3, using Table 3
to define the maximum length.

2. If (temp < seedlen), then personalization_string = personalization_string ||
0seedlen - temp.

3. seed_material = entropy_input ⊕ personalization_string.

4. Key = 0keylen. Comment: keylen bits of zeros.

5. V = 0outlen. Comment: outlen bits of zeros.

6. (Key, V) = Update (seed_material, Key, V).

7. reseed_counter = 1.

8. Return V, Key, and reseed_counter as the initial_working_state.

10.2.1.3.2 The Process Steps for Instantiation When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, nonce,
personalization_string):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the
consuming application. If the input of a personalization_string is not
supported by an implementation, then instantiate process steps 1 and 2 below
are replaced by:

seed_material = Block_Cipher_df (entropy_input, seedlen).

NIST SP 800-90 CTR_DRBG June 2006

52

Output:

1. initial_working_state: The inital values for V, Key, and reseed_counter (see
Section 10.2.1.1).

CTR_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2. seed_material = Block_Cipher_df (seed_material, seedlen).

3. Key = 0keylen. Comment: keylen bits of zeros.

4. V = 0outlen. Comment: outlen bits of zeros.

5. (Key, V) = Update (seed_material, Key, V).

6. reseed_counter = 1.

7. Return V, Key, and reseed_counter as the initial_working_state.
10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The
values for min _length are provided in Table 3 of Section 10.2.1.

The reseed algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let
Update be the function specified in Section 10.2.1.2. The seed length (seedlen) is
provided in Table 3 of Section 10.2.1.

10.2.1.4.1 The Process Steps for Reseeding When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see step 5 of the reseed process in Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then reseed process steps 1 to 3 below are replaced by:

seed_material = entropy_input.

NIST SP 800-90 CTR_DRBG June 2006

53

That is, steps 1-3 collapse into the above step.

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Reseed Process:

1. temp = len (additional_input).

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section
9.2, processing step 2, using Table 3 to
define the maximum length.

2. If (temp < seedlen), then additional_input = additional_input || 0seedlen - temp.

3. seed_material = entropy_input ⊕ additional_input.

4. (Key, V) = Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return V, Key and reseed_counter as the new_working_state.

10.2.1.4.2 The Process Steps for Reseeding When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.4.2 using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see reseed process step 5 of Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input)

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then reseed process steps 1 and 2 become:

seed_material = Block_Cipher_df (entropy_input, seedlen).

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Reseed Process:

1. seed_material = entropy_input || additional_input.

NIST SP 800-90 CTR_DRBG June 2006

54

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2. seed_material = Block_Cipher_df (seed_material, seedlen).

3. (Key, V) = Update (seed_material, Key, V).

4. reseed_counter = 1.

5. Return V, Key, and reseed_counter as the new_working_state.
10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate
algorithm specified in this section. The values for max_number_of_bits_per_request
and max_additional_input_length, and outlen are provided in Table 3 of Section
10.2.1.

For this DRBG mechanism, there are two cases for the processing. For each case, let
Update be the function specified in Section 10.2.1.2, and let Block_Encrypt be the
function specified in Section 10.4.3. The seed length (seedlen) and the value of
reseed_interval are provided in Table 3 of Section 10.2.1.

10.2.1.5.1 The Process Steps for Generating Pseudorandom Bits When a Derivation
Function is Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section
10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input : The additional input string received from the consuming
application. If additional_input is not supported by an implementation, then
step 2 becomes:

additional_input = 0seedlen.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

NIST SP 800-90 CTR_DRBG June 2006

55

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input ≠ Null), then

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section
9.3.3, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is < seedlen, pad with
zero bits.

2.1 temp = len (additional_input).

2.2 If (temp < seedlen), then
additional_input = additional_input || 0seedlen - temp.

2.3 (Key, V) = Update (additional_input, Key, V).

Else additional_input = 0seedlen.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2outlen.

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block .

5. returned_bits = Leftmost requested_number_of_bits of temp.

Comment: Update for backtracking
resistance.

6. (Key, V) = Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter
as the new_working_state.

10.2.1.5.2 The Process Steps for Generating Pseudorandom Bits When a Derivation
Function is Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.4.2 and shall be implemented using the
chosen block cipher algorithm and key size.

NIST SP 800-90 CTR_DRBG June 2006

56

The following process or its equivalent shall be used as generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section
10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input : The additional input string received from the consuming
application. If additional_input is not supported by an implementation, then
step 2 becomes:

additional_input = 0seedlen.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working_state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input ≠ Null), then

2.1 additional_input = Block_Cipher_df (additional_input, seedlen).

2.2 (Key, V) = Update (additional_input, Key, V).

Else additional_input = 0seedlen.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2outlen.

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block .

5. returned_bits = Leftmost requested_number_of_bits of temp.

Comment: Update for backtracking
resistance.

NIST SP 800-90 CTR_DRBG June 2006

57

6. (Key, V) = Update (additional_input, Key, V).

7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter
as the new_working_state.

NIST SP 800-90 Dual_EC_DRBG June 2006

58

10.3 DRBG Mechanisms Based on Number Theoretic Problems

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. This section specifies a DRBG mechanism that is based on the elliptic curve
discrete logarithm problem.

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that Q = aP.

Dual_EC_DRBG uses an initial seed that is 2 * security_strength bits in length to initiate
the generation of outlen-bit pseudorandom strings by performing scalar multiplications on
two points in an elliptic curve group, where the curve is defined over a field approximately
2m in size. For all the NIST curves given in this Recommendation, m is at least twice the
security_strength, and never less than 256. Throughout this DRBG mechanism
specification, m will be referred to as seedlen; the term “seedlen” is appropriate because
the internal state of Dual_EC_DRBG is used as a “seed” for the random block it produces.
Figure 13 depicts the Dual_EC_DRBG.

The instantiation of this DRBG mechanism requires the selection of an appropriate elliptic
curve and curve points specified in Appendix A.1 for the desired security strength. The
seed used to determine the initial value (s) of the DRBG mechanism shall have entropy
that is at least security_strength bits. Further requirements for the seed are provided in
Section 8.6. This DRBG mechanism uses the derivation function specified in Section
10.4.1 during instantiation and reseeding.

The maximum security strength that can be supported by the Dual_EC_DRBG is the
security strength of the curve used; the security strengths for the curves are provided in SP
800-57.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 14, Dual_EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,…, as follows:

seed

0

Instant. or
reseed only

+ ϕ (x (t*P)) ϕ(x (s*Q))t

P Q

s r

If additional input = Null

Extract
Bits

Pseudorandom
Bits

[Optional]
additional input

Figure 13: Dual_EC_DRBG

NIST SP 800-90 Dual_EC_DRBG June 2006

59

 si = ϕ(x(si−1 ∗ P))
 ri = ϕ(x(si ∗ Q)).
Each arrow in the figure represents an Elliptic Curve
scalar multiplication operation, followed by the
extraction of the x coordinate for the resulting point
and for the random output ri, followed by truncation to
produce the output. Following a line in the direction of
the arrow is the normal operation; inverting the
direction implies the ability to solve the ECDLP for
that specific curve. An adversary’s ability to invert an arrow in the figure implies that the
adversary has solved the ECDLP for that specific elliptic curve. Backtracking resistance is
built into the design, as knowledge of s1 does not allow an adversary to determine s0 (and
so forth) unless the adversary is able to solve the ECDLP for that specific curve. In
addition, knowledge of r1 does not allow an adversary to determine s1 (and so forth) unless
the adversary is able to solve the ECDLP for that specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Appendix A.1. Note that all
curves can be instantiated at a security strength lower than the curve’s highest possible
security strength. For example, the highest security strength that can be supported by curve
P-384 is 192 bits; however, this curve can alternatively be instantiated to support only the
112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

 P-256 P-384 P-521

Supported security strengths See SP 800-57
Size of the base field (in bits),
referenced throughout as seedlen

256 384 521

highest_supported_
security_strength

See SP 800-57

Output block length (max_outlen =
largest multiple of 8 less than (size
of the base field) - (13 + log2 (the
cofactor))

240 368 504

Required minimum entropy for
instantiate and reseed

security_strength

Minimum entropy input length
(min_length)

security_strength

Maximum entropy input length
(max _length)

≤ 213 bits

Maximum personalization string
length
(max_personalization_string_length)

≤ 213 bits

S0 S1 S2

R1 R2

Figure 14: Dual_EC_DRBG
Backtracking Resistance

NIST SP 800-90 Dual_EC_DRBG June 2006

60

 P-256 P-384 P-521

Maximum additional input length
(max_additional_input_length)

≤ 213 bits

Length of the initial seed 2 × security_strength

Appropriate hash functions SHA-1, SHA-
224, SHA-256,

SHA-384, SHA-
512

SHA-224, SHA-
256, SHA-384,
SHA-512

SHA-256,
SHA-384,
SHA-512

max_number_of_bits_per_request max_outlen × reseed_interval
Number of blocks between
reseeding (reseed_interval)

≤ 232 blocks

10.3.1.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:

1. The working_state:

a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed, p is the prime that defines the base field Fp, a and b are two
field elements that define the equation of the curve, and n is the order of the
point G. If only one curve will be used by an implementation, these parameters
need not be present in the working_state.

c. Two points P and Q on the curve (see Appendix A). If only one curve will be
used by an implementation, these points need not be present in the
working_state.

d. A counter (reseed_counter) that indicates the number of blocks of random data
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:

a. The security_strength provided by the DRBG instantiation,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG instantiation.

The value of s is the critical value of the internal state upon which the security of this
DRBG mechanism depends (i.e., s is the “secret value” of the internal state).
10.3.1.2 Instantiation of Dual_EC_DRBG

Notes for the ins tantiate function specified in Section 9.1:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function.
Process step 9 of that function calls the instantiate algorithm in this section.

NIST SP 800-90 Dual_EC_DRBG June 2006

61

In process step 5 of the instantiate function, the following step shall be performed to
select an appropriate curve if multiple curves are available.

5. Using the security_strength and Table 4 in Section 10.3.1, select the smallest
available curve that has a security strength ≥ security_strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Appendix
A.1. However, an implementation may use different pairs of points, provided that they
are verifiably random, as evidenced by the use of the procedure specified in Appendix
A.2.1 and the self-test procedure described in Appendix A.2.2.

The values for highest_supported_security_strength and min_length are determined by
the selected curve (see Table 4 in Section 10.3.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an
appropriate hash function from Table 4 in Section 10.3.1. Let seedlen be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):

Dual_EC_DRBG_Instantiate_algorithm (entropy_input, nonce,
personalization_string):

1. entropy_input: The string of bits obtained from the source of entropy input.

2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. If the input of a personalization_string is not supported by an
implementation, then the personalization_string term is removed from step 1 of
the instantiate process, so that step 1 becomes:

seed_material = entropy_input || nonce.

Output:

1. s: The initial secret value for the initial_working_state.

2. reseed_counter: The initialized block counter for reseeding.

Dual_EC_DRBG Instantiate Process:

1. seed_material = entropy_input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s = Hash_df (seed_material, seedlen).

3. reseed_counter = 0.

NIST SP 800-90 Dual_EC_DRBG June 2006

62

4. Return s, and reseed_counter for the initial_working_state.
10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseed of Dual_EC_DRBG requires a call to the reseed function. Process step 5 of
that function calls the reseed algorithm in this section. The values for min _length are
provided in Table 4 of Section 10.3. 1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an
appropriate hash function from Table 4 in Section 10.3. 1.

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG
process after it has been instantiated (see step 5 of the reseed process in Section 9.2):

Dual_EC_DRBG_Reseed_algorithm (s, entropy_input, additional_input):

1. s: The current value of the secret parameter in the working_state.

2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then the additional_input term is removed from step 1 of the
reseed process, so that step 1 becomes:

seed_material = pad8 (s) || entropy_input.

Output:

1. s: The new value of the secret parameter in the new_working_state.

2. reseed_counter: The re- initialized block counter for reseeding.

Dual_EC_DRBG Reseed Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed_material = pad8 (s) || entropy_input || additional_input.

2. s = Hash_df (seed_material, seedlen).

3. reseed_counter = 0.

4. Return s and reseed_counter for the new_working_state.

10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function. Process step 8 of that function calls the generate algorithm

NIST SP 800-90 Dual_EC_DRBG June 2006

63

specified in this section. The values for max_number_of_bits_per_request and
max_outlen are provided in Table 4 of Section 10.3.1. outlen is the number of
pseudorandom bits taken from each x-coordinate as the Dual_EC_DRBG steps. For
performance reasons, the value of outlen should be set to the maximum value as
provided in Table 4. However, an implementation may set outlen to any multiple of 8
bits less than or equal to max_outlen. The bits that become the Dual_EC_DRBG
output are always the rightmost bits, i.e., the least significant bits of the x-coordinates.
Appendix E.2 contains additional information regarding the statistical and
distributional implications related to the truncation of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an
appropriate hash function from Table 4 in Section 10.3.1. The value of reseed_interval
is also provided in Table 4.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. If in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

c. x(A) is the x-coordinate of the point A on the curve, given in affine coordinates.
An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case, a point shall be translated back to affine coordinates before x() is applied.

d. ϕ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.

The precise definition of ϕ(x) used in steps 6 and 7 of the generate process
below depends on the field representation of the curve points. In keeping with
the convention of FIPS 186-2, the following elements will be associated with
each other (note that, in this case, m denotes the size of the base field):

 B: | cm-1 | cm-2 | ... | c1 | c0 | , a bitstring, with cm-1 being leftmost

 Z: cm-12 m-1 + . . . + c222 + c121 + c0 ∈ Z ;

 Fa: cm-12 m-1 + . . . + c222 + c121 + c0 mod p ∈ Fp;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

e. * is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 of the generate process in Section 9.3):

NIST SP 800-90 Dual_EC_DRBG June 2006

64

Dual_EC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q, and a
block_counter (see Section 10.3.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input : The additional input string received from the consuming
application. If the input of additional_input is not supported by an
implementation, then step 2 of the generate process becomes:

additional_input = 0.

Alternatively, generate steps 2 and 9 are omitted, the additional_input term is
omitted from step 5, and the “go to step 5” in step 12 is to the step that now sets
t = s.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or an indication that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. s: The new value for the secret parameter in the new_working_state.

4. reseed_counter: The updated block counter for reseeding.

Dual_EC_DRBG Generate Process:

Comment: Check whether a reseed is
required.

1. If >

+

outlen
bitsofnumberrequested

counterblock

_ reseed_interval, then

return an indication that a reseed is required.

Comment : If additional_input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional_input_string = Null), then additional_input = 0

Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested_no_of_bits,
outlen bits at a time:

3. temp = the Null string.

4 i = 0.

NIST SP 800-90 Dual_EC_DRBG June 2006

65

5. t = s ⊕ additional_input. Comment: t is to be interpreted as a seedlen-
bit unsigned integer. To be precise, t should
be reduced mod n; the operation * will effect
this.

6. s = ϕ(x(t ∗ P)). Comment: s is a seedlen-bit number. Note
that the conversion of ϕ(x) is discussed in
item d above; this also applies to step 7.

7. r = ϕ(x(s ∗ Q)). Comment: r is a seedlen-bit number.

8. temp = temp || (rightmost outlen bits of r).

9. additional_input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

10. reseed_counter = reseed_counter + 1.

11. i = i + 1.

12. If (len (temp) < requested_number_of_bits), then go to step 5.

13 returned_bits = Truncate (temp, i × outlen, requested_number_of_bits).

14. Return SUCCESS, returned_bits, and s, and reseed_counter for the
new_working_state.

10.4 Auxilliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
10.4.1), and the other method is based on block cipher algorithms (see 10.4.2). The block
cipher derivation function uses a Block_Cipher_Hash function that is specified in Section
10.4.3.

The presence of these derivation functions in this Recommendation does not implicitly
approve these functions for any other application.
10.4.1 Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Hash_DRBG and Dual_EC_DRBG specified
Section 10.1.1 and 10.3.1, respectively. The hash-based derivation function hashes an input
string and returns the requested number of bits. Let Hash be the hash function used by the
DRBG mechanism, and let outlen be its output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Hash_df (input_string, no_of_bits_to_return):

1. input_string: The string to be hashed.

NIST SP 800-90 Dual_EC_DRBG June 2006

66

2. no_of_bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of_bits) is implementation dependent, but shall be
less than or equal to (255 × outlen). no_of_bits_to_return is represented as a 32-bit
integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR_FLAG.

2. requested_bits : The result of performing the Hash_df.

Hash_df Process:

1. temp = the Null string.

2.

=
outlen

returntobitsofno
len

.

3. counter = an 8-bit binary value representing the integer "1".

4. For i = 1 to len do

Comment : In step 4.1, no_of_bits_to_return
is used as a 32-bit string.

4.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string).

4.2 counter = counter + 1.

5. requested_bits = Leftmost (no_of_bits_to_return) of temp.

6. Return SUCCESS and requested_bits.

10.4.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. Let
BCC be the function specified in Section 10.4.3. Let outlen be its output block length,
which is a multiple of 8 bits for the Approved block cipher algorithms, and let keylen be
the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Block_Cipher_df (input_string, no_of_bits_to_return):

1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of_bits) is 512 bits for the currently approved
block cipher algorithms.

Output:

1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR_FLAG.

NIST SP 800-90 Dual_EC_DRBG June 2006

67

2. requested_bits : The result of performing the Block_Cipher_df.

Block_Cipher_df Process:

1. If (number_of_bits_to_return > max_number_of_bits), then return an
ERROR_FLAG.

2. L = len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N = number_of_bits_to_return/8. Comment : N is the bitstring represention of
the integer resulting from
number_of_bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S = L || N || input_string || 0x80.

Comment : Pad S with zeros, if necessary.

4. While (len (S) mod outlen) ≠ 0, S = S || 0x00.

Comment : Compute the starting value.

5. temp = the Null string.

6. i = 0. Comment : i shall be represented as a 32-bit
integer, i.e., len (i) = 32.

7. K = Leftmost keylen bits of 0x00010203...1D1E1F.

8. While len (temp) < keylen + outlen, do

8.1 IV = i || 0outlen - len (i). Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.

8.2 temp = temp || BCC (K, (IV || S)).

8.3 i = i + 1.

Comment: Compute the requested number of
bits.

9. K = Leftmost keylen bits of temp.

10. X = Next outlen bits of temp.

11. temp = the Null string.

12. While len (temp) < number_of_bits_to_return, do

12.1 X = Block_Encrypt (K, X).

12.2 temp = temp || X.

NIST SP 800-90 Dual_EC_DRBG June 2006

68

13. requested_bits = Leftmost number_of_bits_to_return of temp.

14. Return SUCCESS and requested_bits.

10.4.3 BCC Function

Block_Encrypt is used for convenience in the specification of the BCC function. This
function is not specifically defined in this Recommendation, but has the following
meaning:

Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see
SP 800-67); for AES, the basic encryption operation is called the cipher operation (see
FIPS 197). The basic encryption operation is equivalent to an encryption operation on a
single block of data using the ECB mode.

For the BCC function, let outlen be the length of the output block of the block cipher
algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

BCC (Key, data):

1. Key: The key to be used for the block cipher operation.

2. data: The data to be operated upon. Note that the length of data must be a multiple
of outlen. This is guaranteed by Block_Cipher_df process steps 4 and 8.1 in
Section 10.4.2.

Output:

1. output_block: The result to be returned from the BCC operation.

BCC Process:

1. chaining_value = 0outlen. Comment: Set the first chaining value to outlen zeros.

2. n = len (data)/outlen.

3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits
each forming block1 to blockn.

4. For i = 1 to n do

4.1 input_block = chaining_value ⊕ blocki .

4.2 chaining_value = Block_Encrypt (Key, input_block).

5. output_block = chaining_value.

6. Return output_block.

NIST SP 800-90 June 2006

69

11 Assurance

A user of a DRBG for cryptographic purposes requires assurance that the generator
actually produces random and
unpredictable bits. The user needs
assurance that the design of the generator,
its implementation and its use to support
cryptographic services are adequate to
protect the user's information. In addition,
the user requires assurance that the
generator continues to operate correctly.
The assurance strategy for the DRBG
mechanisms in this Recommendaion is
depicted in Figure 15.

The design of each DRBG mechanism in
this Recommendation has received an
evaluation of its security properties prior to
its selection for inclusion in this
Recommendation.

An implementation shall be validated for
conformance to this Recommendation by a NVLAP accredited laboratory (see Section
11.2). The consuming application or cryptographic service that uses a DRBG mechanism
should also be validated and periodically tested for continued correct operation. However,
this level of testing is outside the scope of this Recommendation. Such validations provide
a higher level of assurance that the DRBG mechanism is correctly implemented.
Validation testing for DRBG mechanisms consists of testing whether or not the DRBG
mechanism produces the expected result, given a specific set of input parameters (e.g.,
entropy input).

Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG mechanism shall be validated (see FIPS 140-
2). The consuming application or cryptographic service that uses a DRBG mechanism
should also be validated and periodically tested for continued correct operation. However,
this level of testing is outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or health testing)
may be publicly known. Therefore, entropy input used for testing shall not knowingly be
used for normal operational use.

11.1 Minimal Documentation Requirements

A set of documentation shall be developed that will provide assurance to users and
(optionally) validators that the DRBG mechanisms in this Recommendation have been

Figure 15: DRBG Assurance Strategy

NIST SP 800-90 June 2006

70

implemented properly. Much of this documentation may be placed in a user’s manual. This
documentation shall consist of the following as a minimum:

• Document the method for obtaining entropy input.

• Document how the implementation has been designed to permit implementation
validation and health testing.

• Document the type of DRBG mechanism (e.g., CTR_DRBG, Dual_EC_DRBG),
and the cryptographic primitives used (e.g., AES-128, SHA-256).

• Document the security strengths supported by the implementation.

• Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

• If DRBG mechanism functions are distributed, specify the mechanisms that are
used to protect the confidentiality and integrity of the internal state or parts of the
internal state that are transferred between the distributed DRBG mechanism sub-
boundaries.

• In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, document that the implementation can only be
used when full entropy input is available.

• Document any support functions other than health testing.

• Document the periodic intervals at which health testing is performed for the
generate function and provide a justification for the selected intervals (see Section
11.3.3).

• Document how the integrity of the health tests will be determined subsequent to
implementation validation.

11.2 Implementation Validation Testing

A DRBG mechanism shall be tested for conformance to this Recommendation. A DRBG
mechanism shall be designed to be tested to ensure that the product is correctly
implemented. A testing interface shall be available for this purpose in order to allow the
insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:

• Documentation specified in Section 11.1.

• Any documentation or results required in derived test requirements.

11.3 Health Testing

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG
continues to operate as designed and implemented (health testing). The testing function(s)
within a DRBG mechanism boundary (or sub-boundary) shall test each DRBG mechanism
function within that boundary (or sub-boundary), with the possible exception of the test

NIST SP 800-90 June 2006

71

function itself. Note that testing may require the creation and use of an instantiation for
testing purposes only. A DRBG implementation may optionally perform other self-tests for
DRBG functionality in addition to the tests specified in this Recommendation.

All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited
while these tests are performed. The results from known-answer-tests (see Section 11.3.1)
shall not be output as random bits during normal operation.
11.3.1 Known Answer Testing

Known-answer testing shall be conducted as specified in below. A known-answer test
involves operating the DRBG mechanism with data for which the correct output is already
known and determining if the calculated output equals the expected output (the known
answer). The test fails if the calculated output does not equal the known answer. In this
case, the DRBG mechanism shall enter an error state and output an error indicator (see
Section 11.3.6).

Generalized known-answer testing is specified in Sections 11.3.2 to 11.3.5. Testing shall
be performed on all implemented DRBG mechanism functions, with the possible exception
of the test function itself. Documentation shall be provided that addresses the continued
integrity of the health tests (see Section 11.1).

11.3.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same security_strength and prediction_resistance_flag parameters,
then the testing may be reduced to testing only prior to creating the first instantiation using
that parameter set until such time as the succession of instantiations is completed.
Thereafter, other instantiations shall be tested as specified above.

The security_strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if supported) shall be used; the value of
the entropy_input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an error from the source of
entropy input correctly.

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.

11.3.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function in an implementation (i.e., the first use ever) and at reasonable intervals defined

NIST SP 800-90 June 2006

72

by the implementer. The implementer shall document the intervals and provide a
justification for the selected intervals.

The known-answer tests shall be performed for each implemented security_strength.
Representative fixed values and lengths for the requested_number_of_bits and
additional_input (if supported) and the working state of the internal state value (see
Sections 8.3 and 10) shall be used. If prediction resistance is supported, then each
combination of the security_strength, prediction_resistance_request and
prediction_resistance_flag shall be tested. The error handling for each input parameter
shall also be tested, and testing shall include setting the reseed_counter to meet or exceed
the reseed_interval in order to check that the implementation is reseeded or that the DRBG
is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
11.3.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if supported) and the working state of the internal state value shall be
used (see Sections 8.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

Self- testing shall be performed as follows:

1. When prediction resistance is supported in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not supported in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.

11.3.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been zeroized.
11.3.6 Error Handling

The expected errors are indicated for each DRBG mechanism function (see Sections 9.1 -
9.4) and for the derivation functions in Section 10.4. The error handling routines should
indicate the type of error.

NIST SP 800-90 June 2006

73

11.3.6.1 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the
pseudocode. In these cases, the consuming application user is responsible for correcting
the request within the limits of the user’s organizational security policy. For example, if a
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The user
may reduce the requested security strength if the organization’s security policy allows the
information to be protected using a lower security strength, or the user shall use an
appropriately instantiated DRBG.

Catastrophic errors (i.e., those errors indicated by the
CATASTROPHIC_ERROR_FLAG in the pseudocode) detected during normal
operation shall be treated in the same manner as an error detected during health testing
(see Section 11.3.6.2).

11.3.6.2 Errors Encountered During Health Testing

Errors detected during health testing shall be perceived as catastrophic DRBG failures.

When a DRBG fails a health test or a catastrophic error is detected during normal
operation, the DRBG shall enter an error state and output an error indicator. The DRBG
shall not perform any DRBG operations while in the error state, and pseudorandom bits
shall not be output when an error state exists. When in an error state, user intervention
(e.g., power cycling of the DRBG) shall be required to exit the error state, and the DRBG
shall be re-instantiated before the DRBG can be used to produce pseudorandom bits.
Examples of such errors include:

• A test deliberately inserts an error, and the error is not detected, or

• An incorrect result is returned from the instantiate, reseed or generate function than
was expected.

NIST SP 800-90 June 2006

74

Appendix A: (Normative) Application-Specific Constants

A.1 Constants for the Dual_EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves with associated points shall be
used in applications requiring certification under FIPS 140-2. More details about these
curves may be found in FIPS PUB 186-3, the Digital Signature Standard.

Each of following curves is given by the equation:

y2 = x3- 3x + b (mod p)

Notation:

p - Order of the field Fp , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG.

a – (-3) in the above equation

b - coefficient above

The x and y coordina tes of the base point, i.e., generator G, are the same as for the point P.
A.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0
f4a13945 d898c296

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece
cbb64068 37bf51f5

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297 235b82b5 be8ff3ef
ca67c598 52018192

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c 304f44cb 87058ada
2cb81515 1e610046

NIST SP 800-90 June 2006

75

A.1.2 Curve P-384

p = 39402006196394479212279040100143613805079739\

27046544666794829340424572177149687032904726\
6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\

6308152294913554433653942643

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f
5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

Px = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Py = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c
e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Qx = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede31 c47816ed d1e89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd45ee c36f9ee7 b32e13b3 15dc0261

0aa1b636 e346df67 1f790f84 c5e09b05 674dbb7e 45c803dd

A.1.3 Curve P-521

p = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\

6643812574028291115057151

r = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\

0380340372808892707005449

b = 051953eb 9618e1c9 a1f929a2 1a0b6854 0eea2da7 25b99b31 5f3b8b48
9918ef10 9e156193 951ec7e9 37b1652c 0bd3bb1b f073573d f883d2c3
4f1ef451 fd46b503 f00

Px = c6858e06 b70404e9 cd9e3ecb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baa14b5e 77efe759 28fe1dc1 27a2ffa8
de3348b3 c1856a42 9bf97e7e 31c2e5bd 66

Py = 11839296 a789a3bc 0045c8a5 fb42c7d1 bd998f54 449579b4
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fad0
761353c7 086a272c 24088be9 4769fd16 650

NIST SP 800-90 June 2006

76

Qx = 1b9fa3e5 18d683c6 b6576369 4ac8efba ec6fab44 f2276171
a4272650 7dd08add 4c3b3f4c 1ebc5b12 22ddba07 7f722943
b24c3edf a0f85fe2 4d0c8c01 591f0be6 f63

Qy = 1f3bdba5 85295d9a 1110d1df 1f9430ef 8442c501 8976ff34
37ef91b8 1dc0b813 2c8d5c39 c32d0e00 4a3092b7 d327c0e7
a4d26d2c 7b69b58f 90666529 11e45777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG

The security of Dual_EC_DRBG requires that the points P and Q be properly generated.
To avoid using potentially weak points, the points specified in Appendix A.1 should be
used. However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Appendix A.2.1
below, and the self- test procedure in Appendix A.2.2. An implementation that uses
alternative points generated by this Approved method shall have them “hard-wired” into
its source code, or hardware, as appropriate, and loaded into the working_state at
instantiation. To conform to this Recommendation, alternatively generated points shall use
the procedure given in Appendix A.2.1, and verify their generation using Appendix A.2.2.
A.2.1 Generating Alternative P, Q

The curve shall be one of the NIST curves from FIPS 186-3 that is specified in Appendix
A.1 of this Recommendation, and shall be appropriate for the desired security_strength, as
specified in Table 4, Section 10.3.1.

The points P and Q shall be valid base points for the selected elliptic curve that are
generated to be verifiably random using the procedure specified in ANS X9.62. The
following input is required for each point:

An elliptic curve E = (Fp, a, b), cofactor h, prime n, a bit string
domain_parameter_seed5, and hash function Hash(). The curve parameters are given
in Appendix A.1 of this Recommendation. The domain_parameter_seed shall be
different for each point, and the minimum length m of each domain_parameter_seed
shall conform to Section 10.3.1, Table 4, under “Seed length”. The bit length of the
domain_parameter_seed may be larger than m. The hash function shall be SHA-512 in
all cases.

The domain_parameter_seed shall be different for each point P and Q. A domain
parameter seed shall not be the seed used to instantiate a DRBG. The domain parameter
seed is an arbitrary value that may, for example, be determined from the output of a
DRBG.

If the output from the ANS X9.62 generation procedure is “failure”, a different
domain_parameter_seed shall be used for the point being generated.

Otherwise, the output point from the generate procedure in ANS X9.62 shall be used.

5 Called a SEED in ANS X9.62.

NIST SP 800-90 June 2006

77

A.2.2 Additional Self-testing Required for Alternative P, Q

To insure that the points P and Q have been generated appropriately, additional self-test
procedures shall be performed whenever the instantiate function is invoked. Section 11.3.1
specifies that known-answer tests on the instantiate function be performed prior to creating
an operational instantiation. As part of these tests, an implementation of the generation
procedure in ANS X9.62 shall be called for each point (i.e., P and Q) with the appropriate
domain_parameter_seed value that was used to generate that point. The point returned
shall be compared with the corresponding stored value of the point. If the generated value
does not match the stored value, the implementation shall halt with an error condition.

NIST SP 800-90 June 2006

78

Appendix B: (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Bitstring_to_integer (b1, b2,…, bn):

1. b1, b2,…, bn The bitstring to be converted.

Output:

1. x The requested integer representation of the bitstring.

Process:

1. Let (b1, b2,…, bn) be the bits of b from leftmost to rightmost.

2. ()∑
=

−=
n

i
i

in bx
1

2 .

3. Return x.

In this Recommendation, the binary length of an integer x is defined as the smallest integer
n satisfying x < 2n.

B.2 Integer to a Bitstring

Integer_to_bitstring (x):

1. x The non-negative integer to be converted.

Output:

1. b1, b2, ..., bn The bitstring representation of the integer x.

Process:

1. Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most
significant bit, while bn is the least significant bit.

2. For any integer n that satisfies x < 2n, the bits bi shall satisfy:

()∑
=

−=
n

i
i

in bx
1

2 .

3. Return b1, b2, ..., bn.

In this Recommendation, the binary length of the integer x is defined as the smallest
integer n that satisfies x < 2n.

B.3 Integer to an Byte String

Integer_to_byte_string (x):

1. A non-negative integer x, and the intended length n of the byte string satisfying

NIST SP 800-90 June 2006

79

 28n > x.

Output:

1. A byte string O of length n bytes.

Process:

1. Let O1, O2,…, On be the bytes of O from leftmost to rightmost.

2. The bytes of O shall satisfy:

x = Σ 28(n-i)Oi

for i = 1 to n.

3. Return O.

B.4 Byte String to an Integer

Byte_string_to_integer (O):

1. A byte string O of length n bytes.

Output:

1. A non-negative integer x.

Process:

1. Let O1, O2, …, On be the bytes of O from leftmost to rightmost.

2. x is defined as follows:

 x = Σ 28(n-i)Oi

for i = 1 to n.

3. Return x.

B.5 Converting Random Numbers from/to Random Bits

The random values required for cryptographic applications are generally of two types:
either a random bitstring of a specified length, or a random integer in a specified interval.
In some cases, a DRBG may return a random number in a specified interval that needs to
be converted into random bits; in other cases, a DRBG returns a random bitstring that
needs to be converted to a random number in a specific range.
B.5.1 Converting Random Bits into a Random Number

In some cryptographic applications sequences of random numbers are required (a0, a1,
a2,…) where:

i) Each integer ai satisfies 0 ≤ ai ≤ r-1, for some positive integer r (the range of the
random numbers);

ii) The equation ai = s holds, with probability almost exactly 1/r, for any i ≥ 0 and for
any s (0 ≤ s ≤ r-1);

NIST SP 800-90 June 2006

80

iii) Each value ai is statistically independent of any set of values aj (j ≠ i).

Four techniques are specified for generating sequences of random numbers from sequences
of random bits.

If the range of the number required is a ≤ ai ≤ b rather than 0 ≤ ai ≤ r-1, then a random
number in the desired range can be obtained by computing ai + a, where ai is a random
number in the range 0 ≤ ai ≤ b-a (that is, when r = b-a+1).

B.5.1.1 The Simple Discard Method

Let m be the number of bits needed to represent the value (r–1). The following method
may be used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …,
bm-1).

2. Let ∑
−

=

=
1

0

2
m

i
i

i bc .

3. If c < r then put a = c, else discard c and go to Step 1.

This method produces a random number a with no skew (no bias). A possible
disadvantage of this method, in general, is that the time needed to generate such a random
a is not a fixed length of time because of the conditional loop.

The ratio r/2m is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 < r/2m ≤ 1. If r/2m is close to 1, then the above method is simple and efficient.
However, if r/2m is close to 0.5, then the simple discard method is less efficient, and the
more complex method below is recommended.

B.5.1.2 The Complex Discard Method

Choose a small positive integer t (the number of same-size random number outputs
desired), and then let m be the number of bits in (rt –1). This method may be used to
generate a sequence of t random numbers (a0, a1, … , at-1):

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …,
bm-1).

2. Let ∑
−

=

=
1

0

2
m

i
i

i bc .

3. If c < rt , then

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r -1 such

that ∑
−

=

=
1

0

t

i
i

iarc

else discard c and go to Step 1.

NIST SP 800-90 June 2006

81

This method produces random numbers (a0, a1, … , at-1) with no skew. A possible
disadvantage of this method, in general, is that the time needed to generate these numbers
is not a fixed length of time because of the conditional loop. The complex discard may
have better overall performance than the simple discard method if many random numbers
are needed.

The ratio rt/2m is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 < rt/2m ≤ 1. Hence, given r, it is recommended to choose t so that t is the
smallest value such that rt/2m is close to 1. For example, if r = 3, then choosing t = 3
means that m = 5 (as rt is 27) and rt/m = 27/32 ≈ 0.84, and choosing t = 5 means that m = 8
(as rt is 243) and rt/m = 243/256 ≈ 0.95. The complex discard method coincides with the
simple discard method when t = 1.
B.5.1.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (r–1), and let s be a secur ity
parameter. The following method may be used to generate one random number a:

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1,
…, bm+s-1).

2. Let ∑
−+

=

=
1

0

2
sm

i
i

ibc .

3. Let a=c mod r.

The simple modular method can be coded to take constant time. This method produces a
random value with a negligible skew, that is, the probability that ai=w for any particular
value of w (0 ≤ w ≤ r-1) is not exactly 1/r. However, for a large enough value of s, the
difference between the probability that ai=w for any particular value of w and 1/r is
negligible. The value of s shall be greater than or equal to 64.

B.5.1.4 The Complex Modular Method

Choose a small positive integer t (the number of same-size random number outputs
desired) and a security parameter s; let m be the number of bits in (rt –1). The following
method may be used to generate a sequence of t random numbers (a0, a1, …, at-1):

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1,
…, bm+s-1).

2. Let ∑
−+

=

=
1

0

2
sm

i
i

ibc mod rt.

3. Let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r-1 such

that ∑
−

=

=
1

0

t

i
i

iarc .

The complex modular method may have better overall performance than the simple
modular method if many random numbers are needed. This method produces a random

NIST SP 800-90 June 2006

82

value with a negligible skew; that is, the probability that ai=w for any particular value of w
(0 ≤ w ≤ r-1) is not exactly 1/r. However, for a large enough value of s, the difference
between the probability that ai=w for any particular value of w and 1/r is negligible. The
value of s shall be greater than or equal to 64. The complex modular method coincides
with the simple modular method when t=1.
B.5.2 Converting a Random Number into Random Bits

B.5.2.1 The No Skew (Variable Length Extraction) Method

This is a method of extracting random unbiased bits from a random number modulo a
number n. First, a toy example is provided in order to explain how the method works, and
then pseudocode is given.

For the toy example, the insight is to look at the modulus n and the random number r as
bits, from left to right, and to partition the possible values of r into disjoint sets based on
the largest size of random bits that might be extracted. As a small example, if n = 11, then
the binary representation of n is b’1011’, and the possible values of r (in binary) are as
follows:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010.

Let the leftmost bit be considered as the bit 4, and the rightmost bit be considered as the bit
1.

1. As the 4th bit of n is b?1’, look at the 4th bit of r.

2. If the 4th bit of r is b‘0’, then the remaining 3 bits can be extracted as unbiased
random bits. This forms a class of [0000, 0001, 0010, 0011, 0100, 0101, 0110,
0111] and maps each respective element into the 3-bit sequences [000, 001, 010,
011, 100, 0101, 110, 111], each of which is unbiased, and the process is completed

3. If the 4th bit of r is b?1’, then r falls into the remainder [1000, 1001, 1010], and the
process needs to continue with step 4 in order to extract unbiased bits.

4. As the 3rd bit of n is b‘0’, the 3rd bit of r is always b?0’ in the class determined in
step 3; therefore the 3rd bit of r is already known to be biased, so the analysis
moves to the next bit (step 5).

5. The 2nd bit of n is b‘1’, so this forms a subclass [1000, 1001], from which one random
unbiased bit can be extracted, namely the 1st bit.

The remaining value of 1010 cannot be used to extract random bits. However,
obtaining this value is not usual. For this tiny example: 8/11 of the time, 3 unbiased
random bits can be extracted; 2/11 of the time, 1 unbiased bit can be extracted; and
1/11, no unbiased bits can be extracted. As can be seen, it is not known ahead of time
how many unbiased bits will be able to be extracted, although the average will be
known.

Let both the modulus n and the random r values have m bits. This means that the mth bit of
n = b‘1’, although mth bit of r may be either b‘1’ or b‘0’.

NIST SP 800-90 June 2006

83

1. j = 0.

2. Do i = m to 1 by –1

Comment: if the ith bit of n = b‘0’, or the ith
bit of r = b‘1’, then this is a skew situation;
the routine cannot extract i-1 unbiased bits, so
the index is shifted right to check next bit

2.1 If ((the ith bit of n = b‘0’) or (the ith bit of r = b‘1’)), then go to step 2.5.

2.2 j = i-1.

2.3 output = the jth bit of r.

2.4 i = 1 Comment: all unbiased bits possible
have been extracted, so exit .

2.5 Continue

The extraction takes a variable amount of time, but this varying amount of time does not
leak any information to a potential adversary that can be used to attack the method.

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

A possible disadvantage of the No Skew (Variable Length Extraction) Method of
Appendix B.5.2.1 is that it takes a variable amount of time to extract a variable number of
random bits. To address this concern and to simplify the extraction method, the following
method is specified that extracts a fixed length of random bits with a negligible skew. This
method exploits the fact that the modulus n is known before the extraction occurs.

1. Examine the modulus considered as a binary number from left to right, and
determine the index bit such that there are at least 16 b‘1’ bits to the left. Call this
bit i.

2. Extract random bits from the random number r by truncating on the left up to bit i.
This is the output = r(i,1).

This method is especially appropriate when the high order bits of the modulus are all set to
b‘1’ for efficiency reasons, as is the case with the NIST elliptic curves over prime fields.

This method is acceptable for elliptic curves, based on the following analysis. When
considering the no skew method, once the random bits are extracted, it is obvious that less
than the full number of random bits can be extracted, and the extraction result will still be
random. The truncation of more bits than necessary is acceptable. What about truncation
of too few bits? For a random number, the no skew extraction process would continue
only if the 16 bits of r corresponding to the b‘1’ bits in n are all zero. For a random
number, this occurs about once every 216 times. As the modulus is at least 160 bits, this
means that 144 bits with a skew are extracted in this case. On average, once every
9,437,184 output bits (or more), there will be a 144-bit substring somewhere in that total
that has a skew, which will have the leftmost bit or bits tending to a binary zero bit or bits.
This skew could be as little as one bit. However, an adversary will not know exactly
where this skewed substring occurs. The 9,437,184 total output bits will still be

NIST SP 800-90 June 2006

84

overwhelmingly likely to be within the statistical variation of a random bitstring; that is,
the statistical variation almost certainly will be much greater than this negligible skew.

NIST SP 800-90 June 2006

85

Appendix C: (Normative) Entropy and Entropy Sources

An examination of the DRBG mechanisms in this Recommendation reveals a common
feature: each obtains entropy input, produces a seed and applies an algorithm to produce a
potentially large number of pseudo-random bits. The most important feature of the
interaction between the entropy input and the DRBG mechanism is that if an adversary
does not know the entropy input, then he can’t tell the difference between the pseudo-
random bits and a stream of truly random bits, let alone predict any of the pseudorandom
bits. On the other hand, if he knows (or can guess) the entropy input, then he will be able
to predict or reproduce the pseudorandom bits. Thus, the security of the DRBG output is
directly related to the adversary’s inability to guess the entropy input and the seed.

C.1 What is Entropy ?

The word “entropy” is used to describe a measure of randomness, i.e., a description of how
hard a value is to guess. Entropy is a measure of uncertainty or unpredictability and is
dependent on the probabilities associated with the possible results for a given “event” (e.g.,
a throw of a die or flip of a coin).

Entropy is relative to an adversary and his ability to observe or predict a value. If the
adversary has no uncertainty about the value, then the entropy is zero (and so is the
security of the consuming application that relies on the DRBG). Any assessment of the
entropy of a particular value is actually an assessment of how much of the value is
unknown to the adversary.

C.2 Entropy Source

Entropy is obtained from an entropy source. The entropy input required to seed or reseed a
DRBG shall be obtained either directly or indirectly from an entropy source (see Appendix
D for information on RBG construction). The entropy source is the critical component of
an RBG that provides un-guessable values for the deterministic algorithm to use as entropy
input for the random bit generation process.

Every entropy source shall include some source of unpredictable data, which is referred to
as a noise source. The developer using a noise source shall document the adversary’s
ability to predict or observe the output of the noise source and shall provide a model that
justifies his claims for the amount of entropy produced by the noise source (i.e., how
unguessable the values are for the observer).

An intuitive (although usually impractical) example is tossing a coin and recording the
sequence of heads and tails. More likely, the noise source will be an electronic process,
such as a noisy diode, which receives a constant input voltage level and outputs a
continuous, normally distributed analog voltage level. Other possibilities include thermal
noise or radioactive decay that are measured by appropriate instruments. The
unpredictability could involve human interaction with an otherwise deterministic system,
such as the sampling of a high-speed counter whenever a human operator presses a key on
a keyboard. In any case, there shall be something happening that is unpredictable to an
adversary, either fundamentally unpredictable (e.g., when the next particle is detected by a

NIST SP 800-90 June 2006

86

Geiger counter), or unpredictable from a practical point of view (e.g., the adversary won’t
know the exact value of a high-speed counter if he isn’t close enough to the human
pressing a key).

Figure C-1 provides a generic model for an entropy source. A noise source (e.g., a noisy
diode or a coin flip) provides the entropy, which is then converted to bits (i.e., digitized).
In many cases, these bits will contain some bias. Some entropy sources will perform
further processing (i.e, conditioning) on the digitized bits from the noise source in order to
provide an assurance of unbiased output. An entropy source may process the bits to the
point where the output bitstring will have full entropy; i.e. the entropy of the bitstring will
be the same as its length. In this case, the entropy source is called a conditioned entropy
source.

An assessment shall be made of the
amount of entropy that has been obtained.
Typically, this assessment is performed
directly on the digitized data, although it
may be performed on the data resulting
from the conditioning process (see
Appendix C.3). Health tests shall be
performed to determine that the entropy
source is continuing to perform correctly.

Before an entropy source is selected for
providing entropy input to a DRBG
mechanism, a thorough evaluation of the
amount of entropy it is capable of
providing shall be performed.

Guidance on the selection and use of
entropy sources is currently under development and is expected to be provided as a NIST
Recommendation in the future.

C.3 Entropy Assessment

A DRBG requires a predetermined amount of entropy in the entropy input that is used to
seed or reseed an instantiation in order to provide the requested DRBG security strength.
Therefore, the amount of actual entropy obtained from an entropy source shall be assessed
before providing it as entropy input. This assessment may take the form of a conservative
estimate based on the probability model of a healthy entropy source (backed-up by run-
time tests), or it may be performed dynamically at run-time. Note that the actual entropy
provided in a given string of entropy input bits is less than or equal to the length of that
bitstring; i.e., each bit of the entropy input has (at most) one bit of entropy; multiple bits of
the entropy input may be required to provide one bit of entropy.

There are many entropy measures defined in information theory; this Recommendation
uses a very conservative measure that is known as min-entropy (Hmin). Suppose that the
digitized Noise Source produces one of n possible outputs at each sampling, with the ith
possible outcome having a probability of pi. The min-entropy of the outputs is:

Noise
Source

Digitalization

(Optional)
Conditioning

Assessment
Health
Testing

OUTPUT

ENTROPY
SOURCE

Figure C-1: Entropy Source Model

NIST SP 800-90 June 2006

87

Hmin = −lg2(pmax)

where pmax is the maximum probability of the pi . Hmin is expressed in bits. Another, more
commonly used measure of entropy is Shannon entropy. However, min-entropy is a more
conservative estimate of entropy than Shannon entropy, since min-entropy is always less
than Shannon entropy. Therefore, the more conservative estimate is used in this
Recommendation.

For example, suppose that a noisy diode is used as a source of entropy, and that the diode
has possible voltages divided into 16 intervals (column 1), with each interval assigned a 4-
bit string value from 0000 to 1111 (column 2). Whenever the diode is sampled, the result is
digitized and converted to the 4-bit value indicated in column 2. The probability of each
interval has been determined for this diode and is provided in column 3. Note that other
diodes may behave differently.

Collecting entropy from an entropy source requires obtaining numerous samples, where
each sample is the result from a given type of event. Once sufficient samples have been
gathered, they generally need to be converted to bits (e.g. an analog voltage will be
mapped to some digital value, or coin tosses could be mapped to ones and zeros).

Table C-1 : Voltages Digitaization Ranges and Probabilities

Sampled Voltage Digitized Output Probability (pi)

5.2<<∞− Z 0000 0.000233

35.2 <≤ Z 0001 0.001117

5.33 <≤ Z 0010 0.004860

45.3 <≤ Z 0011 0.016540

5.44 <≤ Z 0100 0.044057

55.4 <≤ Z 0101 0.091848

5.55 <≤ Z 0110 0.149882

65.5 <≤ Z 0111 0.191462

5.66 <≤ Z 1000 0.191462

75.6 <≤ Z 1001 0.149882

5.77 <≤ Z 1010 0.091848

85.7 <≤ Z 1011 0.044057

5.88 <≤ Z 1100 0.016540

NIST SP 800-90 June 2006

88

Sampled Voltage Digitized Output Probability (pi)

95.8 <≤ Z 1101 0.004860

5.99 <≤ Z 1110 0.001117

∞<≤ Z5.9 1111 0.000233

For this diode, the most likely digitized outputs are 0111 and 1000, each with a probability
of 0.191462. Therefore, pmax = 0.191462. Using the min-entropy formula above:

Hmin = −lg2(pmax) = −lg2(0.19462) = 2.38487.

This means that for each 4-bit sample from this diode, an entropy of 2.38487 bits is
expected.

One useful fact about min-entropy is that if two samples are independent (e.g., samplings
of the same noisy diode), then the entropy of their concatenation is the sum of their
entropy. This makes sense; if the samples are independent, then guessing one sample
provides no information for guessing another one. If various events are concatenated, then
the min-entropy for each event is added to find the min-entropy of the concatenated events.
In the noisy diode example, if a sample has a min-entropy of 2.38487 bits, then ten
samples taken together have a min-entropy of 23.8487 bits, and one hundred samples have
a min-entropy of 238.487 bits.

These entropy measures relate directly to the security strengths of the Approved DRBG
algorithms. When the entropy source is used to provide entropy input for a DRBG, each
sample will provide a bitstring, along with the assessed amount of entropy in that bitstring.
If a single sample does not provide sufficient entropy for the DRBG, a sequence of
independent bitstrings are obtained and concatenated with each other until the sum of the
entropy assessments for the samples is equal to or greater than the entropy required by the
DRBG. For example, to provide entropy input that is appropriate to instantiate a DRBG
with a security strength of 128 bits, at least 54 samplings of the diode are required
(128/2.38487 = 53.67 ≈ 54) and would result in a bitstring of 216 bits to provide at least
128 bits of entropy.

NIST SP 800-90 June 2006

89

Appendix D: (Normative) Constructing a Random Bit Generator (RBG) from
Entropy Sources and DRBG Mechanisms

This Recommendation is primarily concerned with the DRBG mechanisms for generating
pseudorandom outputs and how they are to be implemented. Some discussion of entropy
sources that may be used to provide entropy input are provided in Appendix C. This
appendix briefly describes how to combine the entropy source with a DRBG mechanism to
create an Approved RBG. Further guidance on RBG construction is under development.

D.1 Entropy Input for a DRBG Mechanism

Section 8.6.5 states that the source of a DRBG mechanism’s entropy input may be 1) an
Approved Non-deterministic Random Bit Generator (NRBG), 2) an Approved DRBG (or
chain of Approved DRBGs) or 3) an appropriate entropy source. A clarification of
concepts may be helpful at this point.

a. An NRBG contains an entropy source (see Appendix
C.1) and performs algorithmic processing on the
entropy source output in order to produce an output
with full entropy (see Figure D-1).

b. DRBG mechanisms are defined in the body of this
Recommendation. A DRBG mechanism is combined
with a source of entropy input to produce a DRBG,
which is also called an RBG.

c. A chain of DRBGs (see the chain of two DRBGs in
Figure D-2) is formed when the entropy input for the
instantiation of the first DRBG (the highest DRBG in
the chain) is obtained from a “true” source of entropy
(i.e., an Approved NRBG or an Approved entropy
source). Each subordinate DRBG is instantiated with
entropy input acquired from an entropy request to a
higher DRBG in the chain. The entropy in the entropy
input for the instantiation of a higher level DRBG
shall be equal to or greater than the entropy required to
instantiate any subordinate DRBG (i.e., the instantiated
security strength of a higher level DRBG shall be equal to or greater than any
subordinate DRBG).

d. An entropy source provides output (see Appendix C.1). This output may be used as
the entropy input for a DRBG mechanism (see DRBG A and the entropy input
from the entropy source in Figure D-2). The entropy source will provide an
assessment of the amount of entropy available in its output (see Appendix C.2).

ENTROPY SOURCE
(See Figure C-1)

ALGORITHMIC
PROCESS-

ING

FULL ENTROPY
OUTPUT

Figure D-1: NRBG

NIST SP 800-90 June 2006

90

When designing an RBG that contains a
DRBG mechanism, there are a number of
concerns to be addressed in addition to the
DRBG mechanism to be selected, including
the source of entropy input to be used, how
readily the entropy input to the DRBG can be
provided, and how the DRBG maintains its
internal state information from one request to
the next. Appendix G provides a discussion
on DRBG mechanism selection, and
Appendix C provides some basic discussion
on entropy sources. This appendix includes
discussions about using sources of entropy
input s whose output may or may not be
readily available and discusses internal state
persistence.

D.2 Availability of Entropy Input for a
DRBG Mechanism

The choice of a source of entropy input will
determine the specific “features” that an RBG can offer a consuming application (e.g.,
whether reseeding or prediction resistance is practical). Whenever entropy input is
requested by a DRBG mechanism during instantiation or reseeding, the source of entropy
input must provide sufficient entropy to support the security strength intended for the
DRBG. The source of entropy input may be able to provide entropy whenever requested
(i.e., entropy is readily available on demand). On the other hand, the source of entropy
input may provide entropy too slowly to honor “frequent” requests (e.g., the entopy input
source may, in practice, be able to provide entropy only during instantiation). In any event,
the entropy input must be provided to the DRBG mechanism via a secure (i.e., private and
authentic) channel.
D.2.1 Using a Readily Available Source of Entropy Input

The ideal situation for a DRBG is to have ready access to some source of entropy input
that provides entropy input (immediately) upon request. The source of entropy input
provides bitstrings, along with an assertion about how much entropy is available.

When the DRBG has a readily available source of entropy input, reseeding and
instantiation can be performed on demand, requests for prediction resistance can be
honored, and a DRBG can be reseeded when it has produced the maximum number of
outputs (i.e., the reseed_interval is reached).

Upon each request for entropy input, the status of the request is returned to the calling
function (i.e., the instantiate or reseed function). A failure of the source of entropy input
has the following consequences:

DRBG B
(see Figure 1)

DRBG B
(see Figure 1)

DRBG A
(see Figure 1)

DRBG A
(see Figure 1)

ENTROPY
SOURCE

(see Figure C-1)

ENTROPY
SOURCE

(see Figure C-1)

NRBG
(see Figure D-1)

NRBG
(see Figure D-1)

OR

Entropy Input

Pseudorandom
Output

Entropy Input

Figure D-2: Chain of DRBGs

NIST SP 800-90 June 2006

91

• If the failure of the entropy source is detected, the DRBG mechanism functions are
designed to return an error status and enter the error state (see Section 11.3.6). No
further output is produced until the failure is corrected.

• If the failure is not immediately detected, the DRBG will continue to provide
output, based on the entropy currently available in the internal state.

If the failure occured prior to or during instantiation, an undetected fa ilure would be
catastrophic, as the DRBG would totally fail to provide the intended security
strength. Therefore, extreme care must be taken to ensure that a DRBG is
instantiated with sufficient entropy.

If the failure occurred subsequent to instantiation, a request for prediction
resistance would not result in prediction resistance being provided; however, the
security strength of the output would be based on whatever entropy had previously
been obtained.

If the failure occured prior to or during a normal reseed (at the end of the
reseed_interval), the security strength of the output would be based on whatever
entropy had previously been obtained. If the implemented reseed_interval is the
maximum that can be supported by the DRBG mechanism (see the tables in Section
10), then the security provided by the DRBG algorithm is no longer assured.
Therefore, the use of a reseed_interval that is significantly less than the maximum
interval is recommended. This would provide additional time for the entropy source
failure to be detected.

D.2.2 No Readily Available Source of Entropy Input

Many implementations of DRBGs will not have ready access to a source of entropy input;
however, a DRBG must be instantiated at a time when the DRBG actually does have
access to some reliable source of entropy input. In some applications, the source of
entropy input is only available during manufacture or device setup; in others, it is
occasionally available (e.g., when a user is moving the mouse around on a laptop).

Over time, a DRBG may be able to accumulate additional entropy from inputs provided by
the user or consuming application as additional_input. For this reason, the DRBG
implementation should accept additional input whenever possible. Implementations that
have values that may have some entropy, such as timestamps or nonces from protocol runs,
should provide these values to the DRBG as additional inputs.

NIST SP 800-90 June 2006

92

Appendix E: (Informative) Security Considerations when Extracting Bits in
the Dual_EC_DRBG

E.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp

Given an integer x in the range 0 to 2N-1, where N is any positive integer, the rth bit of x

depends solely upon whether

r

x
2

is odd or even. Exactly ½ of the integers in this range

have the property that their rth bit is 0. But if x is restricted to FP, i.e., to the range 0 to p-1,
this statement is no longer true.

By excluding the k = 2N – p values p, p+1, ..., 2N –1 from the set of all integers in NZ
2 , the

ratio of ones to zeroes in the rth bit is altered from 2N-1 / 2N-1 to a value that can be no
smaller than (2N-1 – k)/ 2N-1. For all the primes p used in this Recommendation, k/2N-1 is
smaller than 2-31. Thus, the ratio of ones to zeroes in any bit is within at least 2-31 of 1.0.

To detect this small difference from random, a sample of at least 264 outputs is required
before the observed distribution of 1’s and 0’s is more than one standard deviation away
from flat random. This effect is dominated by the bias addressed below in Appendix E.2.

E.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual_EC_DRBG, the full output block of bits produced by the
algorithm is “missing” some entropy. Fortunately, by discarding some of the bits, those
bits remaining can be made to have nearly “full strength”, in the sense that the entropy that
they are missing is negligibly small.

To illustrate what can happen, suppose that the curve P-256 is selected, and that all 256
bits produced were output by the generator, i.e. that outlen = 256 also. Suppose also that
255 of these bits are published, and the 256-th bit is kept “secret”. About ½ the time, the
unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of the
bits are published, about ¼ of the time the other two bits could be predicted. This is a
simple consequence of the fact that only about 1/2 of all 2m bitstrings of length m occur in
the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2m and p, and the actual number of points on the curve (which is
always within 2 * p½ of p). For the curves in this Recommendation, these differences won't
matter at the scale of the results, so they will be ignored. This allows the heuristics given
here to work for any curve with "about" (2m)/f points, where f = 1 is the curve's cofactor.
For all the curves in this Recommendation, the cofactor f = 1.

The basic assumption needed is that the approximately (2m)/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation, albeit

NIST SP 800-90 June 2006

93

approximate, for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d << m.

The formula is ()[] jj
j

dddm plogpj,z,binomprobE
d

2

2

0

222∑
=

− −−= , where E is the entropy.

For each 0 = j = 2d, the term in braces represents the approximate number of bitstrings b of
length (m-d) such that there are exactly j points whose x-coordinates have their (m-d) least
significant bits equal to b; z = (2f-1)/2f is the probability that any particular string occurs
in an x coordinate; pj = (j*2f)/2m is the probability that a member of the j-th category
occurs. Note that the j=0 category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256

log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255

log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254

log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253

log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252

log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251

log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250

log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249

log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248

log2(f): 0 d: 9 entropy: 246.99858974 m-d: 247

log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246

log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245

log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244

log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243

log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242

log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241

log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:

a) The table starts where it should, at 1 missing bit;

b) The missing entropy rapidly decreases;

NIST SP 800-90 June 2006

94

c) For the curves in this Recommendation, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs (i.e., one bit of entropy is missing in a collection of
10,000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of d should be adjusted upward, if necessary, unt il
the number of bits remaining, m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.3.1.4, an implementation may decide to truncate additional bits from
each x-coordinate, provided that the number retained is a multiple of 8.

Because only half of all values in [0, 1, ..., p-1] are valid x-coordinates on an elliptic curve
defined over Fp, it is clear that full x-coordinates should not be used as pseudorandom bits.
The solution to this problem is to truncate these x-coordinates by removing the high order
16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the
performance. However, there is an additional reason that argues against increasing the
truncation. Consider the case where the low s bits of each x-coordinate are kept. Given
some subinterval I of length 2s contained in [0, p), and letting N(I) denote the number of x-
coordinates in I, recent results on the distribution of x-coordinates in [0, p) provide the
following bound:

()
() pp

IN s2
2

− <
p

plog*k 2

,

where k is some constant derived from the asymptotic estimates given in [Shparlinski].
For the case of P-521, this is roughly equivalent to:

() ()12 −− sIN < k *2277,

where the constant k is independent of the value of s. For s < 2277, this inequality is weak
and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities. Further discussion of the
uniformity of the truncated x-coordinates is found in [Gurel], where the form of the prime
defining the field is also taken into account.

NIST SP 800-90 June 2006

95

Appendix F: (Informative) Example Pseudocode for Each DRBG Mechanism

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at n-1, and n is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element. In an empty internal state, all bitstrings are set to
Null, and all integers are set to 0.

For each example in this appendix, arbitary values have been selected that are consistent
with the allowed values for each DRBG mechanism, as specified in the appropriate table in
Section 10.

The pseudocode in this appendix does not include the necessary conversions (e.g., integer
to bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in Appendix B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status ≠ “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.4 is called.

F.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported. Both a personalization string and additional input are supported. A 32-bit
incrementing counter is used as the nonce for instantiation (instantiation_nonce); the nonce
is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a
fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the function envelopes. Also, the Get_entropy_input
function uses only two input parameters, since the first two parameters (as specified in
Section 9) have the same value.

The internal state contains values for V, C, reseed_counter, security_strength and
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter,
security_strength and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction_resistance_flag = 1.

NIST SP 800-90 June 2006

96

In accordance with Table 2 in Section 10.1, the 112 and 128 bit security strengths may be
instantiated. Using SHA-1, the following definitions are applicable for the instantiate,
generate and reseed functions and algorithms:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 160 bits.

3. Required minimum entropy for instantiation and reseed = security_strength.

4. Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number_of_bits_per_request) = 5000
bits.

6. Reseed interval (reseed_interval) = 100,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)
= 512 bits.

8. Maximum length of additional_input (max_additional_input_string_length) = 512
bits.

9. Maximum length of entropy input (max _length) = 1000 bits.
F.1.1 Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
error is encountered. Note that the value of instantiation_nonce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation has been designed to support prediction resistance. However, if a
consuming application actually wants prediction resistance, the implementation expects
that prediction_resistance_flag = 1 during instantiation; this will be used in the generate
function in Appendix F.1.3.

Hash_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),
bitstring personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the input parameters.

1. If (requested_instantiation_security_strength > 128), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string
too long”, -1).

Comment: Set the security_strength to one of
the valid security strengths.

NIST SP 800-90 June 2006

97

3. If (requested_instantiation_security_strength ≤ 112), then security_strength =
112

Else security_strength = 128.

Comment: Get the entropy_input.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input
source:” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that it wraps when it’s storage
limit is reached.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-11.

7. seed_material = entropy_input || instantiation_nonce || personalization_string.

8. seed = Hash_df (seed_material, 440).

9. V = seed.

10. C = Hash_df ((0x00 || V), 440).

11. reseed_counter = 1.

Comment: Find an unused internal
state.

12. (status, state_handle) = Find_state_space ().

13. If (status ≠ “Success”), then Return (status, -1).

14. Save the internal state.

14.1 internal_state (state_handle).V = V.

14.2 internal_state (state_handle).C = C.

14.3 internal_state (state_handle).reseed_counter = reseed_counter.

14.4 internal_state (state_handle). security_strength = security_strength.

14.5 internal_state (state_handle).prediction_resistance_flag =
prediction_resistance_flag.

15. Return (“Success”, state_handle).

NIST SP 800-90 June 2006

98

F.1.2 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Hash_DRBG_Reseed_function:

Input: integer state_handle, bitstring additional_input.

Output: string status.

Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
{Null, Null, 0, 0, 0})), then Return (“State not available for the state_handle”).

Comment: Get the internal state values
needed to determine the new internal state.

2. Get the appropriate internal_state values.

2.1 V = internal_state(state_handle).V.

2.2 security_strength = internal_state(state_handle).security_strength.

Check the length of the additional_input.

3. If (len (additional_input) > 512), then Return (“Additional_input too long”).

Comment: Get the entropy_input.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input
source:” || status).

Comment: The reseed algorithm is provided
in steps 6-10.

6. seed_material = 0x01 || V || entropy_input || additional_input.

7. seed = Hash_df (seed_material, 440).

8. V = seed.

9. C = Hash_df ((0x00 || V), 440).

10. reseed_counter = 1.

Comment: Update the working_state portion
of the internal state.

11. Update the appropriate state values.

11.1 internal_state (state_handle).V = V.

NIST SP 800-90 June 2006

99

11.2 internal_ state (state_handle).C = C.

11.3 internal_ state (state_handle).reseed_counter = reseed_counter.

12. Return (“Success”).
F.1.3 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction_resistance_request = 1 when the Hash_DRBG function is invoked.

Hash_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null,
Null, 0, 0, 0})), then Return (“State not available for the state_handle”, Null).

2. Get the internal state values.

2.1 V = internal_state (state_handle).V.

2.2 C = internal_state (state_handle).C.

2.3 reseed_counter = internal_state (state_handle).reseed_counter.

2.4 security_strength = internal_state (state_handle).security_strength.

2.5 prediction_resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested_no_of_bits > 5000) then Return (“Too many bits requested”,
Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

5. If (len (additional_input) > 512), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance_request = 1) and (prediction_resistance_flag ≠ 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

NIST SP 800-90 June 2006

100

Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.3
and step 1 of the generate algorithm in
Section 10.1.1.4. Because of this combined
step, step 9 of Section 9.3.is not required.

7. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

7.1 status = Hash_DRBG_Reseed_ function (state_handle,
additional_input).

7.2 If (status ≠ “Success”), then Return (status, Null).

7.3 Get the new internal state values that have changed.

7.3.1 V = internal_state (state_handle).V.

7.3.2 C = internal_state (state_handle).C.

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.

7.4 additional_input = Null.

Comment: Steps 8-16 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-13.

8. If (additional_input ≠ Null), then do

7.1 w = Hash (0x02 || V || additional_input).

7.2 V = (V + w) mod 2440.

9.

=

outlen
bitsofnorequested

m

.

10. data = V.

11. W = the Null string.

12. For i = 1 to m

12.1 wi = Hash (data).

12.2 W = W || wi.

12.3 data = (data + 1) mod 2440.

13. pseudorandom_bits = Leftmost (requested_no_of_bits) bits of W.

14. H = Hash (0x03 || V).

15. V = (V + H + C + reseed_counter) mod 2440.

NIST SP 800-90 June 2006

101

16. reseed_counter = reseed_counter + 1.

Comments: Update the working_state.

13. Update the changed values in the state.

13.1 internal_state (state_handle).V = V.

13.2 internal_state (state_handle).reseed_counter = reseed_counter.

 14. Return (“Success”, pseudorandom_bits).

F.2 HMAC_DRBG Example

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not supported. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding
security_strength/2 bits to the security_strength value). The Update function is specified
in Section 10.1.2.2.

A personalization string is supported, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines. Also, the Get_entropy_input function uses only two input parameters, since the
first two parameters (as specified in Section 9) have the same value.

The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and C are bitstrings, and reseed_counter and security_strength are integers.

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256
bits may be instantiated. Using SHA-256, the following definitions are applicable for the
instantiate and generate functions and algorithms:

1. highest_supported_security_strength = 256.

2. Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2
security_strength (this includes the entropy required for the nonce).

4. Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number_of_bits_per_request) = 7500
bits.

6. Reseed_interval (reseed_ interval) = 10,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)
= 160 bits.

8. Maximum length of the entropy input (max _length) = 1000 bits.
F.2.1 Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

NIST SP 800-90 June 2006

102

HMAC_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.

Process:

Check the validity of the input parameters.

1. If (requested_instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security_strength to
one of the valid security strengths.

3. If (requested_security_strength ≤ 112), then security_strength = 112

Else (requested_ security_strength ≤ 128), then security_strength = 128

Else (requested_ security_strength ≤ 192), then security_strength = 192

Else security_strength = 256.

Comment: Get the entropy_input and
the nonce.

4. min_entropy = 1.5 × security_strength.

5. (status, entropy_input) = Get_entropy_input (min_entropy, 1000).

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy
source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
nonce.

7. (V, Key, reseed_counter) = HMAC_DRBG_Instantiate_algorithm
(entropy_input, personalization_string).

Comment: Find an unused internal state.

8. (status, state_handle) = Find_state_space ().

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1).

10. Save the initial state.

10.1 internal_state (state_handle).V = V.

10.2 internal_state (state_handle). Key = Key.

10.3 internal_state (state_handle). reseed_counter = reseed_counter.

NIST SP 800-90 June 2006

103

 10.4 internal_state (state_handle).security_strength = security_strength.

11. Return (“Success” and state_handle).

HMAC_DRBG_Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.

Process:

1. seed_material = entropy_input || personalization_string.

2. Set Key to outlen bits of zeros.

3. Set V to outlen/8 bytes of 0x01.

4. (Key, V) = Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return (V, Key, reseed_counter).

F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected.

HMAC_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of_bits, requested_security_strength).

Output: string (status), bitstring pseudorandom_bits.

Process:

Comment: Check for a valid state handle.

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

2. Get the internal state.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

3. If (requested_no_of_bits > 7500), then Return (“Too many bits requested”,
Null).

NIST SP 800-90 June 2006

104

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

5. (status, pseudorandom_bits, V, Key, reseed_counter) =
HMAC_DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number_of_bits).

6. If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re- instantiate or reseed”, Null).

7. Update the changed state values.

7.1 internal_state (state_handle).V = V.

7.2 internal_state (state_handle).Key = Key.

7.3 internal_state (state_handle).reseed_counter = reseed_counter.

8. Return (“Success”, pseudorandom_bits).

HMAC_DRBG_Generate_algorithm:

Input : bitstring (V, Key), integer (reseed_counter, requested_number_of_bits).

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

Process:

1 If (reseed_counter ≥ 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.

3 While (len (temp) < requested_no_of_bits) do:

3.1 V = HMAC (Key, V).

3.2 temp = temp || V.

4. pseudorandom_bits = Leftmost (requested_no_of_bits) of temp.

5. (Key, V) = Update (Null, Key, V).

6. reseed_counter = reseed_counter + 1.

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).

F.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are supported, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are supported. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. AES_ECB_Encrypt is the Block_Encrypt function (specified in Section 10.4.3)
that uses AES-128 in the ECB mode.

NIST SP 800-90 June 2006

105

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and Key are bitstrings, and all other values are integers. Since prediction
resistance is known to be supported, there is no need for prediction_resistance_flag in the
internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 128 bits.

3. Key length (keylen) = 128 bits.

4. Required minimum entropy for the entropy input during instantiation and reseeding
= security_strength.

5. Minimum entropy input length (min _length) = security_strength bits.

6. Maximum entropy input length (max _length) = 1000 bits.

7. Maximum personalization string input length
(max_personalization_string_input_length) = 800 bits.

8. Maximum additional input length (max_additional_input_length) = 800 bits.

9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of_bits_per_request) = 4000
bits.

11. Reseed interval (reseed_interval) = 100,000 requests.

F.3.1 The Update Function

CTR_DRBG_Update:

Input: bitstring (provided_data, Key, V).

Output: bitstring (Key, V).

Process:

1. temp = Null.

2. While (len (temp) < 256) do

2.1 V = (V + 1) mod 2128.

2.2 output_block = AES_ECB_Encrypt (Key, V).

2.3 temp = temp || ouput_block.

NIST SP 800-90 June 2006

106

3. temp = Leftmost 256 bits of temp.

4 temp = temp ⊕ provided_data.

5. Key = Leftmost 128 bits of temp.

6. V = Rightmost 128 bits of temp.

7. Return (Key, V).
F.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 10.4.2, and uses AES-
128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is known to be
supported.

CTR_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the validity of the input
parameters.

1. If (requested_instantiation_security_strength > 128) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested_instantiation_security_strength ≤ 112), then security_strength =
112

Else security_strength = 128.

Comment: Get the entropy input.

4. (status, entropy_input) = Get_entropy_input (security_strength,
security_strength, 1000).

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy
source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

NIST SP 800-90 June 2006

107

6. instantiation_nonce = instantiation_nonce + 1.

Comment: Invoke the instantiate algorithm.

7. (V, Key, reseed_counter) = CTR_DRBG_Instantiate_algorithm
(entropy_input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

8. (status, state_handle) = Find_state_space ().

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1).

10. Save the internal state.

10.1 internal_state_ (state_handle).V = V.

10.2 internal_state_ (state_handle).Key = Key.

10.3 internal_state_ (state_handle).reseed_counter = reseed_counter.

10.4 internal_state_ (state_handle).security_strength = security_strength.

11. Return (“Success”, state_handle).

CTR_DRBG_Instantiate_algorithm:

Input : bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1. seed_material = entropy_input || nonce || personalization_string.

2. seed_material = Block_Cipher_df (seed_material, 256).

3. Key = 0128. Comment: 128 bits.

4. V = 0128. Comment: 128 bits.

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

6. reseed_counter = 1.

7. Return (V, Key, reseed_counter).
F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.

CTR_DRBG_Reseed_function:

Input: integer (state_handle), bitstring additional_input.

Output: string status.

Process:

NIST SP 800-90 June 2006

108

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”).

2. Get the internal state values.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

3. If (len (additional_input) > 800), then Return (“Additional_input too long”).

4. (status, entropy_input) = Get_entropy_input (security_strength,
security_strength, 1000).

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy
source:” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = CTR_DRBG_Reseed_algorithm (V, Key,
reseed_counter, entropy_input, additional_input).

8. Save the internal state.

8.1 internal_state (state_handle). V = V.

8.2 internal_state (state_handle). Key = Key.

8.3 internal_state (state_handle). reseed_counter = reseed_counter.

8.4 internal_state (state_handle). security_strength = security_strength.

9. Return (“Success”).

CTR_DRBG_Reseed_algorithm:

Input : bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,
additional_input).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

1. seed_material = entropy_input || additional_input.

2. seed_material = Block_Cipher_df (seed_material, 256).

3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

4. reseed_counter = 1.

5. Return V, Key, reseed_counter).

NIST SP 800-90 June 2006

109

F.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected.

CTR_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of_bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

2. Get the internal state.

2.1 V = internal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.

2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

3. If (requested_no_of_bits > 4000), then Return (“Too many bits requested”,
Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

5. If (len (additional_input) > 800), then Return (“Additional_input too long”,
Null).

6. reseed_required_flag = 0.

7. If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status = CTR_DRBG_Reseed_function (state_handle,
additional_input).

7.2 If (status ≠ “Success”), then Return (status, Null).

7.3 Get the new working state values; the administrative information was not
affected.

7.3.1 V = internal_state (state_handle).V.

7.3.2 Key = internal_state (state_handle).Key.

NIST SP 800-90 June 2006

110

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.

7.4 additional_input = Null.

7.5 reseed_required_flag = 0.

Comment: Generate bits using the generate
algorithm.

8. (status, pseudorandom_bits, V, Key, reseed_counter) =
CTR_DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number_of_bits, additional_input).

9. If (status = “Reseed required”), then

9.1 reseed_required_flag = 1.

9.2 Go to step 7.

10. Update the internal state.

10.1 internal_state (state_handle).V = V.

10.2 internal_state (state_handle).Key = Key.

10.3 internal_state (state_handle).reseed_counter = reseed_counter.

10.4 internal_state (state_handle).security_strength = security_strength.

11. Return (“Success”, pseudorandom_bits).

CTR_DRBG_Generate_algorithm:

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits)
bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.

Process:

1. If (reseed_counter > 100,000), then Return (“Reseed required”, Null, V,
Key, reseed_counter).

2. If (additional_input ≠ Null), then

2.1 additional_input = Block_Cipher_df (additional_input, 256).

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0256.

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

4.1 V = (V + 1) mod 2128.

4.2 output_block = AES_ECB_Encrypt (Key, V).

4.3 temp = temp || ouput_block.

NIST SP 800-90 June 2006

111

5. returned_bits = Leftmost (requested_number_of_bits) of temp.

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1.

8. Return (“Success”, returned_bits, V, Key, reseed_counter).

F.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As in Appendix F.3, the
CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are
supported. Both a personalization string and additional input are allowed. A total of 5
internal states are available. For this implementation, the functions and algorithms are
written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function
(specified in Section 10.4.3) that uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter
that is the leftmost bits of the personalization string (Section 8.6.1 states that when a
derivation function is used, the nonce, if used, is contained in the personalization string).
The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and Key are strings, and all other values are integers.Since prediction resistance is
known to be supported, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. The definitions are the same as those provided in Appendix F.3, except that to
be compliant with Table 3, the maximum size of the personalization_string is 224 bits in
order to accommodate the 32-bits of the instantiation_nonce (i.e., len
(instantiation_nonce) + len (personalization_string) must be ≤ seedlen, where seedlen =
256 bits). In addition, the maximum size of any additional_input is 256 bits (i.e., len
(additional_input ≤ seedlen)).
F.4.1 The Update Function

The update function is the same as that provided in Appendix F.3.1.
F.4.2 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided
in Appendix F.3.2, except for the following:

• Step 2 is replaced by:

If (len (personalization_string) > 224), then Return (“Personalization_string too
long”, -1).

• Step 6 is replaced by :

instantiation_nonce = instantiation_nonce + 1.

NIST SP 800-90 June 2006

112

personalization_string = instantiation_nonce || personalization_string.

The instantiate algorithm (CTR_DRBG_Instantiate_algorithm) is the same as that
provided in Appendix F.3.2, except that steps 1 and 2 are replaced by:

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || 0256-temp.

seed_material = entropy_input ⊕ personalization_string.

F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in
Appendix F.3.3, except that step 3 is replaced by:

If (len (additional_input) > 256), then Return (“Additional_input too long”).

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in
Appendix F.3.3, except that steps 1 and 2 are replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0256-temp.

seed_material = entropy_input ⊕ additional_input.

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG_Generate_function) is the same as that provided in
Appendix F.3.4, except that step 5 is replaced by :

If (len (additional_input) > 256), then Return (“Additional_input too long”, Null).

The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided
in Appendix F.3.4, except that step 2.1 is replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0256-temp.

F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the three prime curves. The elliptic curve to be used is selected during instantiation in
accordance with the following:

requested_instantiation_security_strength Elliptic Curve

= 112 P-256

113 – 128 P-256

129 – 192 P-384

193 – 256 P-521

NIST SP 800-90 June 2006

113

A reseed capability is available, but prediction resistance is not supported. Both a
personalization_string and an additional_input are allowed. A total of 10 internal states are
provided. For this implementation, the algorithms are provided as inline code within the
functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself. Also, the
Get_entropy_input function uses only two input parameters, since the first two
parameters (the min_entropy and the min_length) have the same value.

The internal state contains values for s, seedlen, p, a, b, n, P, Q, reseed_counter and
security_strength.

In accordance with Table 4 in Section 10.3.1, security strengths of 112, 128, 192 and 256
bits may be supported. SHA-256 has been selected as the hash function. The following
definitions are applicable for the instantiate, reseed and generate functions:

1. highest_supported_security_strength = 256.

2. Output block length (outlen) = max_outlen. See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security_strength.

4. Maximum entropy input length (max _length) = 1000 bits.

5. Maximum personalization string length (max_personalization_string_length) =
800 bits.

6. Maximum additional input length (max_additional_input_length) = 800 bits.

7. Seed length (seedlen): = 2 × security_strength.

8. Maximum number of bits per request (max_number_of_bits_per_request) =
1000 bits.

9. Reseed interval (reseed_interval) = 232 blocks.

F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section 10.4.1.

Dual_EC_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.

Process:

Comment : Check the validity of the input
parameters.

NIST SP 800-90 June 2006

114

1. If (requested_instantiation_security_strength > 256) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security_strength.

3. If requested_instantiation_security_strength ≤ 112), then

{security_strength = 112; seedlen = 224; outlen = 240}

Else if (requested_instantiation_security_strength ≤ 128), then

{security_strength = 128; seedlen = 256; outlen = 240}

Else if (requested_instantiation_security_strength ≤ 192), then

{security_strength = 192; seedlen = 384; outlen = 368}

Else {security_strength = 256; seedlen = 512; outlen = 504}.

4. Select the appropriate elliptic curve from Appendix A using the Table in
Appendix F.5 to obtain the domain parameters p, a, b, n, P, and Q.

Comment: Request entropy_input.

5. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input
source:” || status, -1).

7. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 1000).

8. If (status ≠ “Success”), then Return (“Catastrophic failure of the random nonce
source:” || status, -1).

Comment: Perform the instantiate algorithm.

9. seed_material = entropy_input || instantiation_nonce || personalization_string.

10. s = Hash_df (seed_material, seedlen).

11. reseed_counter = 0.

Comment: Find an unused internal state and
save the initial values.

12. (status, state_handle) = Find_state_space ().

13. If (status ≠ “Success”), then Return (status, -1).

14. Save the internal state.

14.1 internal_state (state_handle).s = s.

NIST SP 800-90 June 2006

115

14.2 internal_state (state_handle).seedlen = seedlen.

14.3 internal_state (state_handle).p = p.

14.4 internal_state (state_handle).a = a.

14.5 internal_state (state_handle).b = b.

14.6 internal_state (state_handle).n = n.

14.7 internal_state (state_handle).P = P.

14.8 internal_state (state_handle).Q = Q.

14.9 internal_state (state_handle).reseed_counter = reseed_counter.

14.10 internal_state (state_handle).security_strength = security_strength.

15. Return (“Success”, state_handle).
F.5.2 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Dual_EC_DRBG_Reseed_function:

Input: integer state_handle, string additional_input.

Output: string status.

Process:

Comment: Check the input parameters.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state
(state_handle).security_strength = 0)), then Return (“State not available for the
state_handle”).

2. If (len (additional_input) > 800), then Return (“Additional_input too long”).

3. Get the appropriate state values for the indicated state_handle.

3.1 s = internal_state (state_handle).s.

3.2 seedlen = internal_state (state_handle).seedlen.

3.3 security_strength = internal_state (state_handle).security_strength.

Comment: Request new entropy_input with
the appropriate entropy and bit length.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy
source:”|| status).

Comment: Perform the reseed algorithm.

6. seed_material = pad8 (s) || entropy_input || additional_input.

NIST SP 800-90 June 2006

116

7. s = Hash_df (seed_material, seedlen).

8. Update the changed values in the state.

8.1 internal_state (state_handle).s = s.

8.2 internal_state.reseed_counter = 0.

9. Return (“Success”).
F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.

Dual_EC_DRBG_Generate_function:

Input: integer (state_handle, requested_security_strength, requested_no_of_bits),
bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

2. Get the appropriate state values for the indicated state_handle.

2.1 s = internal_state (state_handle).s.

2.2 seedlen = internal_state (state_handle).seedlen.

2.3 P = internal_state (state_handle).P.

2.4 Q = internal_state (state_handle).Q.

2.5 security_strength = internal_state (state_handle).security_strength.

2.6 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

3. If (requested_number_of_bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_strength”, Null).

5. If (len (additional_input) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

NIST SP 800-90 June 2006

117

6. If (reseed_counter +

outlen
bits_of_number_requested

> 232), then

6.1 Dual_EC_DRBG_Reseed_function (state_handle, additional_input).

6.2 If (status ≠ “Success”), then Return (status).

6.3 s = internal_state (state_handle).s, reseed_counter = internal_state
(state_handle).reseed_counter.

6.4 additional_input = Null.

Comment: Execute the generate algorithm.

 7. If (additional_input = Null) then additional_input = 0

Comment: additional_input set to m zeroes.

Else additional_input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested_no_of_bits,
outlen bits at a time:

8. temp = the Null string.

9. i = 0.

10. t = s ⊕ additional_input.

11. s = ϕ(x(t ∗ P)).

12. r = ϕ(x(s ∗ Q)).

13. temp = temp || (rightmost outlen bits of r).

14. additional_input =0seedlen. Comment: seedlen zeroes; additional_input
is added only on the first iteration.

15. reseed_counter = reseed_counter + 1.

16. i = i + 1.

17. If (len (temp) < requested_no_of_bits), then go to step 10.

18. pseudorandom_bits = Truncate (temp, i × outlen, requested_no_of_bits).

19. Update the changed values in the state.

19.1 internal_state.s = s.

19.2 internal_state.reseed_counter = reseed_counter.

20. Return (“Success”, pseudorandom_bits).

NIST SP 800-90 June 2006

118

Appendix G: (Informative) DRBG Mechanism Selection

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, the designer typically starts with a goal that he wishes to
accomplish, then decides on cryptographic mechanisms, such as digital signatures or block
ciphers that can help him achieve that goal. Typically, as the requirements of those
cryptographic mechanisms are better understood, he learns that random bits will need to
generated, and that this must be done with great care so that the cryptographic mechanisms
will not be weakened. At this point, there are three things that may guide the designer's
choice of a DRBG mechanism:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG mechanism based on one of these
primitives, he can minimize the cost of adding that DRBG mechanism. In
hardware, this translates to lower gate count, less power consumption, and less
hardware that must be protected against probing and power analysis. In software,
this translates to fewer lines of code to write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG mechanism is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG mechanism based
on similar properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG mechanism might be a good choice when a
module provides encryption with AES. Since the security of the module is
dependent on the strength of AES, the module's security is not made dependent on
any additional cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
consuming application, but there may be restrictions that need to be addressed (e.g.,
code size or performance requirements).

For example, a module with support for both hash functions and block ciphers
might use the CTR_DRBG if the ability to parallize the generation of random bits
is needed.

The DRBG mechanisms specified in this Recommendation have different performance
characteristics, implementation issues, and security assumptions.

G.1 Hash_DRBG

Hash_DRBG is based on the use of an Approved hash function in a counter mode similar
to the counter mode specified in NIST SP 800-38A. For each Generate request, the current
value of V (a secret value in the internal state) is used as the starting counter that is
iteratively changed to generate each successive n-bit block of requested output, where n is

NIST SP 800-90 June 2006

119

the number of bits in the hash function output block. At the end of the Generate request,
and before the pseudorandom output is returned to the consuming application, the secret
value V is updated in order to prevent backtracking.

Performance. The Generate function is parallelizable, since it uses the counter mode.
Within a Generate request, each n-bit block of output requires one hash function
computation and several addition operations; an additional hash function computation is
required to provide the backtracking resistance. Hash_DRBG produces pseudorandom
output bits in about half the time required by HMAC_DRBG.

Security. Hash_DRBG’s security depends on the underlying hash function’s behavior
when processing a series of sequential input blocks. If the hash function is replaced by a
random oracle, Hash_DRBG is secure. It is difficult to relate the properties of the hash
function required by Hash_DRBG with common properties, such as collision resistance,
pre-image resistance, or pseudorandomness. There are known problems with
Hash_DRBG when the DRBG is instantiated with insufficient entropy for the requested
security strength, and then later provided with enough entropy to attain the amount of
entropy required for the security strength, via the inclusion of additional input during a
Generate request. However, these problems do not affect the DRBG’s security when
Hash_DRBG is instantiated with the amount of entropy specified in this
Recommendation.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 248 generate requests may be made, each of up to 219 bits.

Resources. Hash_DRBG requires access to a hash function, and the ability to perform
addition with seedlen-bit integers. Hash_DRBG uses the hash-based derivation function
Hash_df (specified in Section 10.4.1) during instantiation and reseeding. Any
implementation requires the storage space required for the internal state (see Section
10.1.1.1).

Algorithm Choices. The choice of hash functions that may be used by Hash_DRBG is
discussed in Section 10.1.

G.2 HMAC_DRBG

HMAC_DRBG is built around the use of some Approved hash function using the HMAC
construction. To generate pseudorandom bits from a secret key (Key) and a starting value
V, the HMAC_DRBG computes

 V = HMAC (Key, V).

At the end of a generation request, the HMAC_DRBG generates a new Key and V, each
requiring one HMAC computation.

Performance. HMAC_DRBG produces pseudorandom outputs considerably more
slowly than the underlying hash function processes inputs; for SHA-256, a long generate
request produces output bits at about 1/4 of the rate that the hash function can process
input bits. Each generate request also involves additional overhead equivalent to
processing 2048 extra bits with SHA-256. Note, however, that hash functions are typically

NIST SP 800-90 June 2006

120

quite fast; few if any consuming applications are expected to need output bits faster than
HMAC_DRBG can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an Approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this means that when an attacker doesn’t know the key used, HMAC outputs
look random, even given knowledge and control over the inputs. In general, even
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG; the security of HMAC_DRBG
ultimately relies on the pseudorandomness properties of the underlying hash function. Note
that the pseudorandomness of HMAC is a widely used assumption in designs, and the
HMAC_DRBG requires far less demanding properties of the underlying hash function
than Hash_DRBG.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 248 generate requests may be made, each of up to 219 bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for
optimal performance. However, a general-purpose hash function implementation can
always be used to implement HMAC. Any implementation requires the storage space
required for the internal state (see Section 10.1.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is
discussed in Section 10.1.

G.3 CTR_DRBG

CTR_DRBG is based on using an Approved block cipher algorithm in counter mode (see
SP 800-38A). At the present time, only three-key TDEA and AES are approved for use by
the Federal government for use in this DRBG mechanism. Pseudorandom outputs are
generated by encrypting successive values of a counter; after a generate request, a new key
and new starting counter value are generated.

Performance. For large Generate requests, CTR_DRBG produces outputs at the same
speed as the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG
is parallelizeable. At the end of each Generate request, work equivalent to 2, 3 or 4
encryptions is performed, depending on the choice of underlying block cipher algorithm, to
generate new keys and counters for the next Generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in the sense that, so long as some limits on the total number of
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.2.1, for each of the three
AES key sizes, up to 248 generate requests may be made, each of up to 219 bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints: each generate request is limited
to 213 bits, and at most, 232 such requests may be made.

NIST SP 800-90 June 2006

121

Resources. CTR_DRBG may be implemented with or without a derivation function.

When a derivation function is used, CTR_DRBG can process the personalization string
and any additional input in the same way as any other DRBG mechanism, but at a cost in
performance because of the use of the derivation function (as opposed to not using the
derivation function; see below). Such an implementation may be seeded by any Approved
source of entropy input that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the
personalization string and any additional input are provided, but is less flexible because the
lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by a source of entropy input that provides full entropy
(e.g., an Approved conditioned entropy source or Approved NRBG).

CTR_DRBG requires access to a block cipher algorithm, including the ability to change
keys, and the storage space required for the internal state (see Section 10.2.1.1).

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be
used by CTR_DRBG is discussed in Section 10.2.1.

G.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG generates pseudorandom outputs by extracting bits from elliptic
curve points. The secret, internal state of the DRBG is a value s that is the x-coordinate of
a point on an elliptic curve. Outputs are produced by first computing r to be the x-
coordinate of the point s*P, and then extracting low order bits from the x-coordinate of the
elliptic curve point r*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG mechanism, this
algorithm generates pseudorandom bits more slowly than the other DRBG mechanisms in
this Recommendation. It should be noted, however, that the design of this algorithm
allows for certain performance-enhancing possibilities. First, note that the use of fixed
base points allows a substantial increase in the performance of this DRBG mechanism via
the use of tables. By storing multiples of the points P and Q, the elliptic curve
multiplication can be accomplished via point additions rather than multiplications, a much
less expensive operation. In more constrained environments where table storage is not an
option, the use of so-called Montgomery Coordinates of the form (X : Z) can be used as a
method to increase performance, since the y-coordinates of the computed points are not
required. Alternatively, Jacobian or Projective Coordinates of the form (X, Y, Z) can speed
up the elliptic curve multiplication operation. These have been shown to be competitive
with Montgomery for the NIST curves, and are straightforward to implement.

A given implementation of this DRBG mechanism need not include all three of the NIST-
Approved curves. Once the designer decides upon the strength required by a given
application, he can then choose to implement the single curve that most appropriately
meets this requirement. For a common level of optimization expended, the higher strength
curves will be slower and tend toward less efficient use of output blocks. To mitigate the
latter, the designer should be aware that every distinct request for random bits requires the
computational expense of at least two elliptic curve point multiplications.

NIST SP 800-90 June 2006

122

Applications requiring large blocks of random bits (such as IKE or SSL), can thus be
implemented most efficiently by first making a single call to the Dual_EC_DRBG for all
the required bits, and then appropriately partitioning these bits as required by the protocol.
For applications that already have hardware or software support for elliptic curve
arithmetic, this DRBG mechanism is a natural choice, as it allows the designer to utilize
existing capabilities to generate random numbers.

Security. The security of Dual_EC_DRBG is based on the Elliptic Curve Discrete
Logarithm Problem that has no known attacks better than the meet- in-the-middle attacks.
For an elliptic curve defined over a field of size 2m, the work factor of these attacks is
approximately 2m/2, so that solving this problem is computationally infeasible for the
curves in this Recommendation. The Dual_EC_DRBG is the only DRBG mechanism in
this Recommendation whose security is related to a hard problem in number theory.

Constraints on Outputs. For any one of the three elliptic curves listed in Appendix A.1, a
particular instance of Dual_EC_DRBG may generate at most 232 output blocks before
reseeding, where the size of the output blocks is discussed in Section 10.3.1.4. Since the
sequence of output blocks is expected to cycle in approximately sqrt(n) bits (where n is the
(prime) order of the particular elliptic curve being used), this is quite a conservative reseed
interval for any one of the three curves.

Resources. Any source of entropy input may be used with Dual_EC_DRBG, provided
that it is capable of generating at least min_entropy bits of entropy in a string of
max_length = 213 bits. This DRBG mechanism also requires an appropriate hash function
(see Table 4) that is used exclusively for producing an appropriately-sized initial state from
the entropy input at instantiation or reseeding. An implementation of this DRBG
mechanism must also have enough storage for the internal state (see 10.3.1.1). Some
optimizations require additional storage for moderate to large tables of pre-computed
values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual_EC_DRBG is discussed in Appendix A.1.

G.5 Summary for DRBG Selection

Table G-1 provides a summary of the DRBG mechanisms in this Recommendation.
Table G-1: DRBG Mechanism Summary

 Dominating Cost/Block Constraints (max.)
Hash_DRBG 2 hash function calls 248 calls of 219 bits

HMAC_DRBG 4 hash function calls 248 calls of 219 bits

CTR_DRBG (TDEA) 1 TDEA encrypt 232 calls of 213 bits
CTR_DRBG (AES) 1 AES encrypt 248 calls of 219 bits

Dual_EC_DRBG 2 EC points 232 blocks

NIST SP 800-90 June 2006

123

Appendix H : (Informative) References

Federal Information Processing Standard 140-2, Security Requirements for Cryptographic
Modules, May 25, 2001.

Federal Information Processing Standard 180-2, Secure Hash Standard (SHS), August
2002.

Federal Information Processing Standard 186-3, Digital Signature Standard (DSS), Draft
March 2006.

Federal Information Processing Standard 197, Advanced Encryption Standard (AES),
November 2001.

Federal Information Processing Standard 198, Keyed-Hash Message Authentication Code
(HMAC), March 6, 2002.

National Institute of Standards and Technology Special Publication (SP) 800-38A,
Recommendation for Block Cipher Modes of Operation - Methods and Techniques,
December 2001.

NIST Special Publication (SP) 800-57, Part 1, Recommendation for Key Management:
General, [August 2005].

NIST Special Publication (SP) 800-67, Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher, May 2004.

American National Standard (ANS) X9.62-2005, Public Key Cryptography for the Financial
Services Industry - The Elliptic Curve Digital Signature Algorithm (ECDSA).

American National Standard (ANS) X9.63-2001, Public Key Cryptography for the Financial
Services Industry - Key Agreement and Key Transport Using Elliptic Key Cryptography.

[Gurel] Gurel, Nicholas, “Extracting Bits from Coordinates of a Point of an Elliptic Curve”,
Cryptology Eprint Archive: 2005/324.

[Shparlinski] E.E. Mahassni and I. Shparlinski, On the Uniformity of Distribution of
Congruential Generators over Elliptic Curves, preprint November 2000.
http://citeseer.ist.psu.edu/mahassni00uniformity.html .

